Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function

ABSTRACT Human MRI scanners at ultra‐high magnetic field strengths of 7 T and higher are increasingly available to the neuroscience community. A key advantage brought by ultra‐high field MRI is the possibility to increase the spatial resolution at which data is acquired, with little reduction in image quality. This opens a new set of opportunities for neuroscience, allowing investigators to map the human cortex at an unprecedented level of detail. In this review, we present recent work that capitalizes on the increased signal‐to‐noise ratio available at ultra‐high field and discuss the theoretical advances with a focus on sensory and motor systems neuroscience. Further, we review research performed at sub‐millimeter spatial resolution and discuss the limits and the potential of ultra‐high field imaging for structural and functional imaging in human cortex. The increased spatial resolution achievable at ultra‐high field has the potential to unveil the fundamental computations performed within a given cortical area, ultimately allowing the visualization of the mesoscopic organization of human cortex at the functional and structural level. HIGHLIGHTSUltra‐high field MRI (UHF) provides improved sensitivity and specificity.UHF provides access to human mesoscopic organization, including laminae and columns.The mesoscopic scale may contain the fundamental computational unit of the brain.This may be the most fundamental unit required to understand human brain function.

[1]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[2]  Natalia Petridou,et al.  Systematic variation of population receptive field properties across cortical depth in human visual cortex , 2016, NeuroImage.

[3]  S. Ogawa,et al.  Biophysical and Physiological Origins of Blood Oxygenation Level-Dependent fMRI Signals , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[5]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Jonathan C. Horton,et al.  Anatomical Demonstration of Ocular Dominance Columns in Striate Cortex of the Squirrel Monkey , 1996, The Journal of Neuroscience.

[7]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Seong-Gi Kim,et al.  Mapping Iso-Orientation Columns by Contrast Agent-Enhanced Functional Magnetic Resonance Imaging: Reproducibility, Specificity, and Evaluation by Optical Imaging of Intrinsic Signal , 2006, The Journal of Neuroscience.

[9]  Seong-Gi Kim,et al.  Early Temporal Characteristics of Cerebral Blood Flow and Deoxyhemoglobin Changes during Somatosensory Stimulation , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  Junjie Liu,et al.  Laminar profiles of functional activity in the human brain , 2007, NeuroImage.

[11]  Rolf Gruetter,et al.  Stroking or Buzzing? A Comparison of Somatosensory Touch Stimuli Using 7 Tesla fMRI , 2015, PloS one.

[12]  Felix Breuer,et al.  Simultaneous multislice (SMS) imaging techniques , 2015, Magnetic resonance in medicine.

[13]  Leonie Lampe,et al.  Lamina-dependent calibrated BOLD response in human primary motor cortex , 2016, NeuroImage.

[14]  R. Goebel,et al.  High-Resolution Mapping of Myeloarchitecture In Vivo: Localization of Auditory Areas in the Human Brain. , 2015, Cerebral cortex.

[15]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[16]  J. Lund,et al.  Widespread periodic intrinsic connections in the tree shrew visual cortex. , 1982, Science.

[17]  Denis Schluppeck,et al.  7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex , 2015, The Journal of Neuroscience.

[18]  E. G. Jones,et al.  Commissural and cortico-cortical "columns" in the somatic sensory cortex of primates , 1975, Science.

[19]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[20]  Olaf Blanke,et al.  Distinct contributions of Brodmann areas 1 and 2 to body ownership. , 2015, Social cognitive and affective neuroscience.

[21]  David Ress,et al.  Model of the Transient Neurovascular Response Based on Prompt Arterial Dilation , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  Peter C M van Zijl,et al.  Experimental measurement of extravascular parenchymal BOLD effects and tissue oxygen extraction fractions using multi‐echo VASO fMRI at 1.5 and 3.0 T , 2005, Magnetic resonance in medicine.

[23]  R. Turner,et al.  Optimizing T 1-weighted imaging of cortical myelin content at 3 . 0 T , 2012 .

[24]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[25]  Mark I Malterud Pushing it to the limits. , 2016, General dentistry.

[26]  Mayur Narsude,et al.  Comparison of an 8-Channel and a 32-Channel Coil for High-Resolution fMRI at 7 T , 2013, Brain Topography.

[27]  Denis Schluppeck,et al.  Assessing the Spatial Precision of SE and GE-BOLD Contrast at 7 Tesla , 2014, Brain Topography.

[28]  Lawrence L. Wald,et al.  Effect of spatial smoothing on physiological noise in high-resolution fMRI , 2006, NeuroImage.

[29]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[30]  Heidi Johansen-Berg,et al.  Investigating the Stability of Fine-Grain Digit Somatotopy in Individual Human Participants , 2016, The Journal of Neuroscience.

[31]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[32]  A. Grinvald,et al.  Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping , 1996, Science.

[33]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[34]  Richard S. J. Frackowiak,et al.  Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus , 2011, The Journal of Neuroscience.

[35]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[36]  Essa Yacoub,et al.  Retinotopic mapping with spin echo BOLD at 7T. , 2010, Magnetic resonance imaging.

[37]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[38]  P. Matthews,et al.  Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. , 2005, Journal of vision.

[39]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[40]  M. Wong-Riley Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys , 1979, Brain Research.

[41]  Brian A. Wandell,et al.  Plasticity and Stability of the Visual System in Human Achiasma , 2012, Neuron.

[42]  S. Shipp Structure and function of the cerebral cortex , 2007, Current Biology.

[43]  J. McCullough Non-Linearities of the BOLD Response in the Human Brain , 2006 .

[44]  Shahin Nasr,et al.  Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3 , 2016, The Journal of Neuroscience.

[45]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[46]  Robert Turner,et al.  Optimizing T1-weighted imaging of cortical myelin content at 3.0T , 2013, NeuroImage.

[47]  Gijs Plomp,et al.  Retinotopic encoding of the Ternus-Pikler display reflected in the early visual areas , 2016, Journal of vision.

[48]  M. Jenkinson,et al.  In vivo identification of human cortical areas using high-resolution MRI: An approach to cerebral structure–function correlation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Dumoulin Functional MRI of the Visual System , 2015 .

[50]  Brian A. Wandell,et al.  In vivo evidence of functional and anatomical stripe-based subdivisions in human V2 and V3 , 2017, Scientific Reports.

[51]  S Sunderland,et al.  Structural changes in the isolated visual cortex. , 1939, Journal of anatomy.

[52]  Denis Schluppeck,et al.  Contribution of large scale biases in decoding of direction-of-motion from high-resolution fMRI data in human early visual cortex , 2012, NeuroImage.

[53]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[54]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[55]  A. Grinvald,et al.  Columnar Resolution of Blood Volume and Oximetry Functional Maps in the Behaving Monkey Implications for fMRI , 2004, Neuron.

[56]  J. R. Baker,et al.  The intravascular contribution to fmri signal change: monte carlo modeling and diffusion‐weighted studies in vivo , 1995, Magnetic resonance in medicine.

[57]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[58]  A Grinvald,et al.  In-vivo Optical Imaging of Cortical Architecture and Dynamics , 1999 .

[59]  Robert Turner,et al.  How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes , 2002, NeuroImage.

[60]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[61]  Serge O. Dumoulin,et al.  Congenital visual pathway abnormalities: a window onto cortical stability and plasticity , 2015, Trends in Neurosciences.

[62]  S. Dumoulin,et al.  Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex , 2015, Proceedings of the National Academy of Sciences.

[63]  Essa Yacoub,et al.  Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla , 2007, NeuroImage.

[64]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[65]  Oliver Speck,et al.  Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T , 2009, Clinical Neurophysiology.

[66]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[67]  Robert Turner,et al.  Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T , 2014, NeuroImage.

[68]  J. Tigges,et al.  Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey , 1977, The Journal of comparative neurology.

[69]  W. Nauta,et al.  Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey , 1977, Brain Research.

[70]  Natalia Petridou,et al.  Lines of Baillarger in vivo and ex vivo: Myelin contrast across lamina at 7T MRI and histology , 2016, NeuroImage.

[71]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[72]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[73]  Theodor Kaes,et al.  Die Großhirnrinde des Menschen in ihren Maßen und in ihrem Fasergehalt : ein gehirnanatomischer Atlas , 1907 .

[74]  N. Logothetis,et al.  High-resolution fMRI of macaque V1. , 2007, Magnetic resonance imaging.

[75]  Jun Hua,et al.  Whole‐brain three‐dimensional T2‐weighted BOLD functional magnetic resonance imaging at 7 Tesla , 2014, Magnetic resonance in medicine.

[76]  Peter G. Morris,et al.  fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes , 2009, NeuroImage.

[77]  E. Aarnoutse,et al.  Action Preparation Shapes Processing in Early Visual Cortex , 2015, The Journal of Neuroscience.

[78]  Natalia Petridou,et al.  Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla , 2015, Magnetic resonance in medicine.

[79]  João Jorge,et al.  Physiological noise in human cerebellar fMRI , 2015, Magnetic Resonance Materials in Physics, Biology and Medicine.

[80]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[81]  Tao Jin,et al.  Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation , 2008, NeuroImage.

[82]  N. Kanwisher,et al.  Interpreting fMRI data: maps, modules and dimensions , 2008, Nature Reviews Neuroscience.

[83]  K. Uğurbil,et al.  High‐resolution, spin‐echo BOLD, and CBF fMRI at 4 and 7 T , 2002, Magnetic resonance in medicine.

[84]  Nasser Kehtarnavaz,et al.  Brain Functional Localization: A Survey of Image Registration Techniques , 2007, IEEE Transactions on Medical Imaging.

[85]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[86]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[87]  Fuqiang Zhao,et al.  Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution , 2005, NeuroImage.

[88]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[89]  Nick F. Ramsey,et al.  BOLD matches neuronal activity at the mm scale: A combined 7T fMRI and ECoG study in human sensorimotor cortex , 2014, NeuroImage.

[90]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[91]  Olaf Blanke,et al.  Brain system for mental orientation in space, time, and person , 2015, Proceedings of the National Academy of Sciences.

[92]  Michael Breakspear,et al.  The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex , 2016, NeuroImage.

[93]  Ravi S. Menon,et al.  Submillimeter functional localization in human striate cortex using BOLD contrast at 4 Tesla: Implications for the vascular point‐spread function , 1999, Magnetic resonance in medicine.

[94]  Ravi S. Menon Postacquisition suppression of large‐vessel BOLD signals in high‐resolution fMRI , 2002, Magnetic resonance in medicine.

[95]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[96]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[97]  Max A. Viergever,et al.  MR venography of the human brain using susceptibility weighted imaging at very high field strength , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[98]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[99]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[100]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[101]  Thomas L. Griffiths,et al.  Supplementary Information for Natural Speech Reveals the Semantic Maps That Tile Human Cerebral Cortex , 2022 .

[102]  S. Dumoulin,et al.  The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture , 2011, The Journal of Neuroscience.

[103]  S. Dumoulin,et al.  Transformation from a Retinal to a Cyclopean Representation in Human Visual Cortex , 2015, Current Biology.

[104]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[105]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[106]  N. Petridou,et al.  Pushing the limits of high‐resolution functional MRI using a simple high‐density multi‐element coil design , 2013, NMR in biomedicine.

[107]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[108]  Rolf Gruetter,et al.  Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T. , 2009, Magnetic resonance imaging.

[109]  Robert Turner,et al.  Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2 ⁎-imaging at ultra-high magnetic field strength , 2013, NeuroImage.

[110]  Serge O. Dumoulin,et al.  Attraction of Position Preference by Spatial Attention throughout Human Visual Cortex , 2014, Neuron.

[111]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[112]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[113]  Serge O. Dumoulin,et al.  Visual motion transforms visual space representations similarly throughout the human visual hierarchy , 2016, NeuroImage.

[114]  S. Francis,et al.  Spatial location and strength of BOLD activation in high‐spatial‐resolution fMRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7 T , 2012, NMR in biomedicine.

[115]  R. Goebel,et al.  Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI , 2011, PloS one.

[116]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .

[117]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[118]  S. Geyer High-Field Magnetic Resonance Mapping of the Border Between Primary Motor (Area 4) and Somatosensory (Area 3a) Cortex in Ex-Vivo and In-Vivo Human Brains , 2013 .

[119]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[120]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[121]  N. Ramsey,et al.  BOLD Specificity and Dynamics Evaluated in Humans at 7 T: Comparing Gradient-Echo and Spin-Echo Hemodynamic Responses , 2013, PloS one.

[122]  Guy A. Orban,et al.  Monkey Cortex through fMRI Glasses , 2014, Neuron.

[123]  A. Grinvald,et al.  Non-invasive visualization of cortical columns by fMRI , 2000, Nature Neuroscience.

[124]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[125]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[126]  G. Glover,et al.  Physiological noise in oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[127]  Essa Yacoub,et al.  Functional MRI mapping neuronal inhibition and excitation at columnar level in human visual cortex , 2010, Experimental Brain Research.

[128]  Ravi S. Menon,et al.  Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI , 2001, Human brain mapping.

[129]  Seong-Gi Kim,et al.  Neural Interpretation of Blood Oxygenation Level-Dependent fMRI Maps at Submillimeter Columnar Resolution , 2007, The Journal of Neuroscience.

[130]  D. Kleinfeld,et al.  The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow , 2013, Nature Neuroscience.

[131]  Rolf Gruetter,et al.  New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping , 2013, PloS one.

[132]  Essa Yacoub,et al.  Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI , 2015, Front. Neurosci..

[133]  Seong-Gi Kim,et al.  Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution , 2013, NeuroImage.

[134]  Gang Chen,et al.  Identification of cortical lamination in awake monkeys by high resolution magnetic resonance imaging , 2012, NeuroImage.

[135]  D. L. Adams,et al.  Capricious expression of cortical columns in the primate brain , 2003, Nature Neuroscience.

[136]  Anna W Roe,et al.  Columnar Specificity of Microvascular Oxygenation and Blood Flow Response in Primary Visual Cortex: Evaluation by Local Field Potential and Spiking Activity , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[137]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[138]  Kenichi Ueno,et al.  A temporal frequency–dependent functional architecture in human V1 revealed by high-resolution fMRI , 2007, Nature Neuroscience.

[139]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[140]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[141]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[142]  Nikos K. Logothetis,et al.  fMRI at High Spatial Resolution: Implications for BOLD-Models , 2016, Front. Comput. Neurosci..

[143]  R. Goebel,et al.  Frequency preference and attention effects across cortical depths in the human primary auditory cortex , 2015, Proceedings of the National Academy of Sciences.

[144]  S. Francis,et al.  Mapping human somatosensory cortex in individual subjects with 7 T functional MRI 1 Running title : Mapping human somatosensory cortex , 2010 .

[145]  A. Schleicher,et al.  Transmitter receptors and functional anatomy of the cerebral cortex , 2004, Journal of anatomy.

[146]  Olaf Blanke,et al.  Human finger somatotopy in areas 3b, 1, and 2: A 7T fMRI study using a natural stimulus , 2014, Human brain mapping.

[147]  A. Dale,et al.  Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal , 2010, Proceedings of the National Academy of Sciences.

[148]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[149]  Anna Devor,et al.  Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe , 2015, The Journal of Neuroscience.

[150]  David G Norris,et al.  T2‐weighted 3D fMRI using S2‐SSFP at 7 tesla , 2010, Magnetic resonance in medicine.

[151]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[152]  Roel H. R. Deckers,et al.  Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla , 2005, Magnetic resonance in medicine.

[153]  Dae-Shik Kim,et al.  Localized cerebral blood flow response at submillimeter columnar resolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[154]  T A Woolsey,et al.  Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. , 1996, Cerebral cortex.

[155]  R. Goebel,et al.  Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE , 2013, PloS one.

[156]  Jun Hua,et al.  Noninvasive functional imaging of cerebral blood volume with vascular‐space‐occupancy (VASO) MRI , 2013, NMR in biomedicine.

[157]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[158]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[159]  G. E. Smith A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907, Journal of anatomy and physiology.

[160]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[161]  Robert Turner,et al.  Do the congenitally blind have a stria of Gennari? First intracortical insights in vivo. , 2010, Cerebral cortex.

[162]  P. Dechent,et al.  Direct mapping of ocular dominance columns in human primary visual cortex , 2000, Neuroreport.

[163]  H. Bridge,et al.  High-resolution MRI: in vivo histology? , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[164]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[165]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[166]  Pierre-Louis Bazin,et al.  Multi-contrast multi-scale surface registration for improved alignment of cortical areas , 2015, NeuroImage.

[167]  Essa Yacoub,et al.  Mechanisms underlying decoding at 7 T: Ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey information on the stimulated eye , 2010, NeuroImage.

[168]  T. Powell,et al.  The somatic sensory cortex. , 1977, British medical bulletin.

[169]  Alessio Fracasso,et al.  Bilateral population receptive fields in congenital hemihydranencephaly , 2016, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[170]  Peter J. Koopmans,et al.  BOLD fMRI signal characteristics of S1- and S2-SSFP at 7 Tesla , 2014, Front. Neurosci..

[171]  Society of magnetic resonance in medicine , 1990 .

[172]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[173]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[174]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[175]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[176]  Smith Ge,et al.  A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907 .

[177]  Lee M. Miller,et al.  Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex , 2013, The Journal of Neuroscience.

[178]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[179]  Lawrence C. Sincich,et al.  Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex , 2007, The Journal of Neuroscience.

[180]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[181]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[182]  Jeff H. Duyn,et al.  Temporal dynamics of the BOLD fMRI impulse response , 2005, NeuroImage.

[183]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[184]  Dae-Shik Kim,et al.  High-resolution mapping of iso-orientation columns by fMRI , 2000, Nature Neuroscience.

[185]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[186]  Essa Yacoub,et al.  The rapid development of high speed, resolution and precision in fMRI , 2012, NeuroImage.

[187]  Robert W. Williams,et al.  Target recognition and visual maps in the thalamus of achiasmatic dogs , 1994, Nature.

[188]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[189]  Michele Furlan,et al.  Global Motion Processing in Human Visual Cortical Areas V2 and V3 , 2016, The Journal of Neuroscience.

[190]  J. Grafman,et al.  Imaging cortical anatomy by high‐resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 , 2002, Magnetic resonance in medicine.

[191]  Essa Yacoub,et al.  Processing of frequency and location in human subcortical auditory structures , 2015, Scientific Reports.

[192]  J. Kaas,et al.  Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus , 1979, The Journal of comparative neurology.

[193]  S. Francis,et al.  Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7 T , 2012, Journal of magnetic resonance imaging : JMRI.

[194]  N. Ramsey,et al.  Cortical Depth-Dependent Temporal Dynamics of the BOLD Response in the Human Brain , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[195]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[196]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[197]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[198]  Kawin Setsompop,et al.  Rapid brain MRI acquisition techniques at ultra‐high fields , 2016, NMR in biomedicine.

[199]  Adrian T. Lee,et al.  Discrimination of Large Venous Vessels in Time‐Course Spiral Blood‐Oxygen‐Level‐Dependent Magnetic‐Resonance Functional Neuroimaging , 1995, Magnetic resonance in medicine.

[200]  Ravi S. Menon,et al.  Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. , 1997, Journal of neurophysiology.

[201]  P. Figueiredo,et al.  Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7 Tesla. , 2013, Magnetic resonance imaging.

[202]  G. Edelman,et al.  The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function , 1978 .

[203]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[204]  J. Mayhew,et al.  Concurrent fMRI and optical measures for the investigation of the hemodynamic response function , 2005, Magnetic resonance in medicine.