Linking stability with molecular geometries of perovskites and lanthanide richness using machine learning methods

Oxide perovskite materials of type ABO3 have a wide range of technological applications, such as catalysts in solid oxide fuel cells and as light-absorbing materials in solar photovoltaics. These materials often exhibit differential structural and electrostatic properties through lanthanide or non-lanthanide derived A- and B- sites. Although, experimental and/or computational verification of these differences are often difficult. In this paper, we thus take a data-driven approach. Specifically, we run three analysis using the dataset Li, Jacobs, and Morgan [2018a] applying advanced machine learning tools to perform nonparametric regressions and also to produce data visualizations using latent factor analysis (LFA) and principal component analysis (PCA). We also implement a nonparametric feature screening step while performing our high dimensional regression analysis, ensuring robustness in our results

[1]  X. Xing,et al.  Chemical Diversity for Tailoring Negative Thermal Expansion. , 2022, Chemical reviews.

[2]  G. Herranz,et al.  Dynamic control of octahedral rotation in perovskites by defect engineering , 2022, Physical Review B.

[3]  Brian L. DeCost,et al.  Recent advances and applications of deep learning methods in materials science , 2021, npj Computational Materials.

[4]  Sung-Yoon Chung,et al.  Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden–Popper phases , 2021, Nature Communications.

[5]  E. Carter,et al.  Factors Governing Oxygen Vacancy Formation in Oxide Perovskites. , 2021, Journal of the American Chemical Society.

[6]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[7]  Ethan C. Ahn,et al.  Perovskite Oxides Tunable by Electromechanical and Electrothermal Couplings , 2020, ECS Meeting Abstracts.

[8]  L. Tjeng,et al.  A combinatory ferroelectric compound bridging simple ABO3 and A-site-ordered quadruple perovskite , 2020, Nature Communications.

[9]  J. Zhou Structural distortions in rare-earth transition-metal oxide perovskites under high pressure , 2020 .

[10]  I. Castelli,et al.  Electronic Structure and Trap States of Two-Dimensional Ruddlesden–Popper Perovskites with the Relaxed Goldschmidt Tolerance Factor , 2020 .

[11]  Shunbo Hu,et al.  Persistent Spin-Texture and Ferroelectric Polarization in 2D Hybrid Perovskite Benzylammonium Lead-halide. , 2020, The journal of physical chemistry letters.

[12]  Alan William Dougherty,et al.  Accelerating Atomic Catalyst Discovery by Theoretical Calculations‐Machine Learning Strategy , 2020, Advanced Energy Materials.

[13]  Wei Li,et al.  Predicting the thermodynamic stability of perovskite oxides using machine learning models , 2018, Computational Materials Science.

[14]  Wei Li,et al.  Data and Supplemental information for predicting the thermodynamic stability of perovskite oxides using machine learning models , 2018, Data in brief.

[15]  Feliciano Giustino,et al.  The geometric blueprint of perovskites , 2018, Proceedings of the National Academy of Sciences.

[16]  Zhenrong Li,et al.  Compositional segregation and electrical properties characterization of [001]- and [011]-oriented co-growth Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal , 2018 .

[17]  D. Morgan,et al.  Material Discovery and Design Principles for Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells , 2018, 1801.06109.

[18]  Faming Liang,et al.  A Robust Model-Free Feature Screening Method for Ultrahigh-Dimensional Data , 2017, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[19]  A. Stroppa,et al.  On The Density Functional Theory Treatment of Lanthanide Coordination Compounds: A Comparative Study in a Series of Cu-Ln (Ln = Gd, Tb, Lu) Binuclear Complexes. , 2017, Inorganic chemistry.

[20]  Aurélien Géron,et al.  Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems , 2017 .

[21]  G. Rossetti,et al.  Piezoelectric and ferroelectric properties of C Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals under combined thermal and mechanical loading , 2017 .

[22]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[23]  Y. Liu,et al.  Scandium modified lead magnesium niobate-lead titanate single crystals for high temperature and high power applications , 2016 .

[24]  Logan T. Ward,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016, 1606.09551.

[25]  A. Sobolev,et al.  Low-Temperature Structural Modulations in CdMn7O12, CaMn7O12, SrMn7O12, and PbMn7O12 Perovskites Studied by Synchrotron X-ray Powder Diffraction and Mössbauer Spectroscopy , 2016 .

[26]  Samuel Kaski,et al.  Sparse group factor analysis for biclustering of multiple data sources , 2015, Bioinform..

[27]  Xiu-yu Li,et al.  High piezoelectric response of a new ternary ferroelectric pb(Ho1/2Nb1/2)O3-pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal , 2015 .

[28]  Rahul Malik,et al.  Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations , 2014 .

[29]  V. Shubha,et al.  Oxide Thermoelectric Materials: A Structure–Property Relationship , 2014, Journal of Electronic Materials.

[30]  Alina A. von Davier,et al.  Cross-Validation , 2014 .

[31]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[32]  Gerbrand Ceder,et al.  High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability , 2013, 1309.1727.

[33]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[34]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[35]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[36]  Frank A. Farris The Gini Index and Measures of Inequality , 2010, Am. Math. Mon..

[37]  Ludwig J. Gauckler,et al.  Materials design for perovskite SOFC cathodes , 2009 .

[38]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[39]  M. Azuma,et al.  A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet. , 2008, Angewandte Chemie.

[40]  Hua-gui Zheng,et al.  Synthesis, Crystal Structure, and Photocatalytic Activity of a New Two-Layer Ruddlesden—Popper Phase, Li2CaTa2O7. , 2008 .

[41]  J. Goodenough,et al.  High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates , 2008, Proceedings of the National Academy of Sciences.

[42]  D. Mackinnon Introduction to Statistical Mediation Analysis , 2008 .

[43]  A. Bell,et al.  Correlations between transition temperature, tolerance factor and cohesive energy in 2+:4+ perovskites , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  M. Johnsson,et al.  Crystallography and Chemistry of Perovskites , 2005, cond-mat/0506606.

[45]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[46]  L. Singheiser,et al.  Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC) , 2003 .

[47]  L. Bendersky,et al.  Transmission electron microscopy study of Ruddlesden-Popper Can+1MnnO3n+1 n = 2 and 3 compounds , 2003 .

[48]  J. Attfield ‘A’ cation control of perovskite properties , 2002 .

[49]  S. Blundell,et al.  The Hydride Anion in an Extended Transition Metal Oxide Array: LaSrCoO3H0.7 , 2002, Science.

[50]  E. Dhahri,et al.  Effect of the A Cation Size on the Structural, Magnetic, and Electrical Properties of Perovskites (La1−xNdx)0.7Sr0.3r003nMnO3 , 2002 .

[51]  K. S. Aleksandrov,et al.  Structural distortions in families of perovskite-like crystals , 2001 .

[52]  Mário A. T. Figueiredo On Gaussian radial basis function approximations: interpretation, extensions, and learning strategies , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[53]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[54]  D. Giaquinta,et al.  Structural Predictions in the ABO3 Phase Diagram , 1994 .

[55]  R. Hauser,et al.  The Decomposition of Effects in Path Analysis , 1975 .

[56]  D. Groggel Practical Nonparametric Statistics , 1972, Technometrics.

[57]  A. Glazer,et al.  The structure of sodium niobate (T2) at 600°C, and the cubic-tetragonal transition in relation to soft-phonon modes , 1972 .

[58]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[59]  Bernd Eggers,et al.  Encyclopedia Of Physical Science And Technology , 2016 .

[60]  Monika Eisenhower,et al.  Encyclopedia Of Physical Science And Technology , 2016 .

[61]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[62]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[63]  Norbert Henze,et al.  A class of invariant consistent tests for multivariate normality , 1990 .