Ferromagnetic single-atom spin catalyst for boosting water splitting

[1]  Huifeng Li,et al.  Regulating the Spin State of FeIII Enhances the Magnetic Effect of the Molecular Catalysis Mechanism. , 2022, Journal of the American Chemical Society.

[2]  D. Xue,et al.  Significant Change of Metal Cations in Geometric Sites by Magnetic-Field Annealing FeCo2 O4 for Enhanced Oxygen Catalytic Activity. , 2021, Small.

[3]  Zhichuan J. Xu,et al.  SmCo5 with a reconstructed oxyhydroxide surface for spin selective water oxidation under elevated temperature. , 2021, Angewandte Chemie.

[4]  Peifang Wang,et al.  Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction , 2021, Nature Communications.

[5]  Zhichuan J. Xu,et al.  Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation , 2021, Nature Communications.

[6]  Zhichuan J. Xu,et al.  Spin-polarized oxygen evolution reaction under magnetic field , 2021, Nature Communications.

[7]  S. Xi,et al.  Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries , 2021, Nature Nanotechnology.

[8]  Y. Gong,et al.  Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition , 2021, Nature Communications.

[9]  Hao Tan,et al.  Single-atom-layer catalysis in MoS2 monolayer activated by long-range ferromagnetism: beyond the single-atom catalysis. , 2021, Angewandte Chemie.

[10]  B. Ding,et al.  Direct Magnetic Reinforcement of Electrocatalytic ORR/OER with Electromagnetic Induction of Magnetic Catalysts , 2020, Advanced materials.

[11]  J. Ding,et al.  Colossal Magnetization and Giant Coercivity in Ion-Implanted (Nb and Co) MoS2 Crystals. , 2020, ACS applied materials & interfaces.

[12]  T. Sun,et al.  Design of Local Atomic Environments in Single‐Atom Electrocatalysts for Renewable Energy Conversions , 2020, Advanced materials.

[13]  Ping Xu,et al.  Recent Advances in Magnetic Field-Enhanced Electrocatalysis , 2020 .

[14]  Qiang Zhang,et al.  Seawater electrolyte-based metal–air batteries: from strategies to applications , 2020 .

[15]  Dehui Deng,et al.  Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer , 2020, Nature Communications.

[16]  M. Terrones,et al.  Monolayer Vanadium‐Doped Tungsten Disulfide: A Room‐Temperature Dilute Magnetic Semiconductor , 2020, Advanced science.

[17]  A. N. Vamivakas,et al.  Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping , 2020, Nature Communications.

[18]  A. Vinu,et al.  High Coercivity and Magnetization in WSe2 by Codoping Co and Nb. , 2020, Small.

[19]  Alexander J. Cowan,et al.  Electrolysis of low-grade and saline surface water , 2020, Nature Energy.

[20]  X. Lou,et al.  Non‐Noble‐Metal‐Based Electrocatalysts toward the Oxygen Evolution Reaction , 2020, Advanced Functional Materials.

[21]  Tongtong Wang,et al.  Robust ferromagnetism in Cr-doped ReS2 nanosheets demonstrated by experiments and density functional theory calculations , 2019, Nanotechnology.

[22]  H. Yang,et al.  Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction , 2019, Advanced materials.

[23]  Hyunsoo Yang,et al.  All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures , 2019, Nature Nanotechnology.

[24]  N. López,et al.  Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media , 2019, Nature Energy.

[25]  R. Naaman,et al.  Chiral molecules and the electron spin , 2019, Nature Reviews Chemistry.

[26]  Stefan Reichelstein,et al.  Economics of converting renewable power to hydrogen , 2019, Nature Energy.

[27]  J. McCusker Electronic structure in the transition metal block and its implications for light harvesting , 2019, Science.

[28]  Zhenxiang Cheng,et al.  Optimized Electronic Configuration to Improve the Surface Absorption and Bulk Conductivity for Enhanced Oxygen Evolution Reaction. , 2019, Journal of the American Chemical Society.

[29]  A. Hamzaoui,et al.  ESR studies of transition from ferromagnetism to superparamagnetism in nano-ferromagnet La0.8Sr0.2MnO3 , 2018, Journal of Magnetism and Magnetic Materials.

[30]  Tao Chen,et al.  Surface Modulation of Hierarchical MoS2 Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution , 2018, Advanced Functional Materials.

[31]  Matthew R. Shaner,et al.  Net-zero emissions energy systems , 2018, Science.

[32]  M. Chatenet,et al.  Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles , 2018 .

[33]  Yanyong Wang,et al.  Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting , 2018, Advanced science.

[34]  Seunghwan Lee,et al.  Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. , 2018, Journal of the American Chemical Society.

[35]  J. Gracia,et al.  Principles determining the activity of magnetic oxides for electron transfer reactions , 2018 .

[36]  Youyong Li,et al.  Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn–Air Batteries , 2018 .

[37]  J. Gracia Spin dependent interactions catalyse the oxygen electrochemistry. , 2017, Physical chemistry chemical physics : PCCP.

[38]  K. Novoselov,et al.  Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production , 2017, Nature Communications.

[39]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[40]  Xiaodong Zhuang,et al.  Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production , 2016 .

[41]  Simone Raugei,et al.  The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase , 2016, Science.

[42]  M. Menon,et al.  Tunable magnetic properties of transition metal doped MoS 2 , 2014 .

[43]  K. Sun,et al.  In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of CO oxidation. , 2014, Chemical communications.

[44]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  C. Krellner,et al.  Relevance of ferromagnetic correlations for the electron spin resonance in Kondo lattice systems. , 2008, Physical review letters.

[46]  E. Zhecheva,et al.  EPR analysis of the local structure of Ni3+ ions in Ni-based electrode materials obtained under high-pressure , 2007 .

[47]  K. Kern,et al.  Ferromagnetism in one-dimensional monatomic metal chains , 2002, Nature.

[48]  A. Buchachenko,et al.  Electron spin catalysis. , 2002, Chemical reviews.

[49]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[50]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[53]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[54]  S. Pennycook,et al.  Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides , 2013 .

[55]  Quantification of the Effect of an External Magnetic Field on Water Oxidation with Cobalt Oxide Anodes , 2022 .