WOLF: A modular estimation framework for robotics based on factor graphs

This paper introduces WOLF, a C++ estimation framework based on factor graphs and targeted at mobile robotics. WOLF can be used beyond SLAM to handle selfcalibration, model identification, or the observation of dynamic quantities other than localization. The architecture of WOLF allows for a modular yet tightly-coupled estimator. Modularity is enhanced via reusable plugins that are loaded at runtime depending on application setup. This setup is achieved conveniently through YAML files, allowing users to configure a wide range of applications without the need of writing or compiling code. Most procedures are coded as abstract algorithms in base classes with varying levels of specialization. Overall, all these assets allow for coherent processing and favor code re-usability and scalability. WOLF can be used with ROS, and is made publicly available and open to collaboration.

[1]  Hauke Strasdat,et al.  Real-time monocular SLAM: Why filter? , 2010, 2010 IEEE International Conference on Robotics and Automation.

[2]  Salvatore Troisi,et al.  Time-differenced carrier phases technique for precise GNSS velocity estimation , 2014, GPS Solutions.

[3]  Alvaro García Cazorla,et al.  ROS : Robot Operating System , 2013 .

[4]  F. V. Graas,et al.  Precise Velocity Estimation Using a Stand-Alone GPS Receiver , 2004 .

[5]  Nicolas Mansard,et al.  Contact forces pre-integration for the whole body estimation of legged robots , 2021, ICRA 2021.

[6]  Wolfgang Hess,et al.  Real-time loop closure in 2D LIDAR SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Mathieu Aubry,et al.  CosyPose: Consistent multi-view multi-object 6D pose estimation , 2020, ECCV.

[8]  Stephan Weiss,et al.  MaRS: A Modular and Robust Sensor-Fusion Framework , 2021, IEEE Robotics and Automation Letters.

[9]  Juan Andrade-Cetto,et al.  Graph SLAM Sparsification With Populated Topologies Using Factor Descent Optimization , 2018, IEEE Robotics and Automation Letters.

[10]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[11]  David W. Murray,et al.  Improving the Agility of Keyframe-Based SLAM , 2008, ECCV.

[12]  Simona Nobili,et al.  Direct visual SLAM fusing proprioception for a humanoid robot , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[13]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Frank Dellaert,et al.  Factor Graphs for Robot Perception , 2017, Found. Trends Robotics.

[15]  Dinesh Atchuthan,et al.  Towards new sensing capabilities for legged locomotion using real-time state estimation with low-cost IMUs. (Vers de nouvelles capacités de perception pour les robotes à jambes à l'aide de l'estimation d'états temps réel avec des centrales inertielles à bas coût) , 2018 .

[16]  Simona Nobili,et al.  Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-World Scenarios , 2020, Frontiers in Robotics and AI.

[17]  Salah Sukkarieh,et al.  Efficient integration of inertial observations into visual SLAM without initialization , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[19]  Richard Elvira,et al.  ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM , 2021, IEEE Transactions on Robotics.

[20]  Juan Andrade-Cetto,et al.  LOGIMATIC Autonomous Navigation , 2019 .

[21]  Viorela Ila,et al.  SLAM++ 1 -A highly efficient and temporally scalable incremental SLAM framework , 2017, Int. J. Robotics Res..

[22]  Dinesh Atchuthan,et al.  A micro Lie theory for state estimation in robotics , 2018, ArXiv.

[23]  Guoquan Huang,et al.  Unit Quaternion-Based Parameterization for Point Features in Visual Navigation , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[24]  Bartolomeo Della Corte,et al.  Plug-and-Play SLAM: A Unified SLAM Architecture for Modularity and Ease of Use , 2020, ArXiv.

[25]  François Michaud,et al.  RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation , 2018, J. Field Robotics.

[26]  Adrian Jimenez,et al.  Galileo and EGNOS as an asset for UTM safety and security , 2019 .

[27]  José-Luis Blanco-Claraco,et al.  A Modular Optimization Framework for Localization and Mapping , 2019, Robotics: Science and Systems.

[28]  Edwin Olson,et al.  AprilTag: A robust and flexible visual fiducial system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[29]  Nicolas Mansard,et al.  RT-SLAM: A Generic and Real-Time Visual SLAM Implementation , 2011, ICVS.

[30]  Nicolas Mansard,et al.  Absolute humanoid localization and mapping based on IMU Lie group and fiducial markers , 2019, 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids).