The SLAM problem: a survey

This paper surveys the most recent published techniques in the field of Simultaneous Localization and Mapping (SLAM). In particular it is focused on the existing techniques available to speed up the process, with the purpose to handel large scale scenarios. The main research field we plan to investigate is the filtering algorithms as a way of reducing the amount of data. It seems that almost all the current approaches can not perform consistent maps for large areas, mainly due to the increase of the computational cost and due to the uncertainties that become prohibitive when the scenario becomes larger.

[1]  Ana Cristina Murillo,et al.  SURF features for efficient robot localization with omnidirectional images , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[3]  Ryan M. Eustice,et al.  Large-area visually augmented navigation for autonomous underwater vehicles , 2005 .

[4]  Wolfram Burgard,et al.  A real-time expectation-maximization algorithm for acquiring multiplanar maps of indoor environments with mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[5]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[6]  John J. Leonard,et al.  Consistent, Convergent, and Constant-Time SLAM , 2003, IJCAI.

[7]  Stefan B. Williams,et al.  Autonomous underwater simultaneous localisation and map building , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Danica Kragic,et al.  A framework for vision based bearing only 3D SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[9]  Matthew R. Walter,et al.  Exactly Sparse Extended Information Filters for Feature-based SLAM , 2007, Int. J. Robotics Res..

[10]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[11]  Hugh F. Durrant-Whyte,et al.  Simultaneous Mapping and Localization with Sparse Extended Information Filters: Theory and Initial Results , 2004, WAFR.

[12]  Andrew Hogue,et al.  Underwater 3D SLAM through entropy minimization , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[13]  R. Eustice,et al.  Large area 3D reconstructions from underwater surveys , 2004, Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600).

[14]  Sebastian Thrun,et al.  Multi-robot SLAM with Sparse Extended Information Filers , 2003, ISRR.

[15]  Matthew R. Walter,et al.  A Provably Consistent Method for Imposing Sparsity in Feature-Based SLAM Information Filters , 2007, ISRR.

[16]  Sebastian Thrun,et al.  Simultaneous Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[17]  Joaquim Salvi,et al.  3D Large-Scale Seabed Reconstruction for UUV Simultaneous Localization and Mapping , 2008 .

[18]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[19]  Salah Sukkarieh,et al.  Airborne simultaneous localisation and map building , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[20]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[21]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[22]  Frank Wolter,et al.  Exploring Artificial Intelligence in the New Millenium , 2002 .

[23]  Juan D. Tardós,et al.  Hierarchical SLAM: real-time accurate mapping of large environments , 2005, IEEE Transactions on Robotics.

[24]  S. Sukkarieh,et al.  Autonomous airborne navigation in unknown terrain environments , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters for View-Based SLAM , 2006, IEEE Transactions on Robotics.

[26]  Hanumant Singh,et al.  Visually Mapping the RMS Titanic: Conservative Covariance Estimates for SLAM Information Filters , 2006, Int. J. Robotics Res..

[27]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[28]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[30]  Wolfram Burgard,et al.  Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM , 1999, ICML.

[31]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[32]  Sebastian Thrun,et al.  FastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics , 2007 .

[33]  D. Fox,et al.  Sonar-Based Mapping With Mobile Robots Using EM , 1999 .

[34]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[35]  Patric Jensfelt,et al.  EKF SLAM updates in O(n) with Divide and Conquer SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[36]  Jagath Samarabandu,et al.  Recent advances in simultaneous localization and map-building using computer vision , 2007, Adv. Robotics.