Hybrid Type-2 Fuzzy-Sliding Mode Controller for Navigation of Mobile Robot in an Environment Containing a Dynamic Target

We are interested in developing a new control architecture to command a mobile robot in a partially known environment. For that purpose, a hybrid control architecture is adopted, combining the reactive and the deliberative method. The reactive method consists of the hierarchical fuzzy controllers based on Type-2 Fuzzy Logic System (T2-FLS), dedicated to commanding the robot towards a mobile target while avoiding unexpected obstacles. A comparative study is made to show the efficiency of T2-FLS against Type-1 Fuzzy Logic System (T1-FLS). Additionally, the used deliberative method is the sliding mode, allowing the robot to track the mobile goal trajectory. Simulation results are given finally to test the proposed architecture.

[1]  Ahmed Benzerrouk,et al.  Stable navigation in formation for a multi-robot system based on a constrained virtual structure , 2014, Robotics Auton. Syst..

[2]  Gabor Horvath,et al.  Artificial neural network based mobile robot navigation , 2009, 2009 IEEE International Symposium on Intelligent Signal Processing.

[3]  Malik Manceur,et al.  Commande robuste des systèmes non linéaires complexes , 2012 .

[4]  Nabil Derbel,et al.  Interval type-2 Takagi-Sugeno-Kang fuzzy logic approach for three-tank system modeling , 2014, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE).

[5]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[6]  Nabil Derbel,et al.  Hierarchical fuzzy controller to avoid mobile obstacle for a mobile robot , 2013, 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13).

[7]  Oscar Castillo,et al.  Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot , 2016, Sensors.

[8]  Jang-Myung Lee,et al.  Sliding mode control for trajectory tracking of mobile robot in the RFID sensor space , 2009 .

[9]  Tao Zhang,et al.  A new hybrid navigation algorithm for mobile robots in environments with incomplete knowledge , 2012, Knowl. Based Syst..

[10]  Hichem Maaref,et al.  Sensor-based navigation of a mobile robot in an indoor environment , 2002, Robotics Auton. Syst..

[11]  Zhihong Man,et al.  Navigation of four-wheel-steering mobile robots using robust fault-tolerant sliding mode control , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[12]  Boubekeur Mendil,et al.  Toward safety navigation in cluttered dynamic environment: A robot neural-based hybrid autonomous navigation and obstacle avoidance with moving target tracking , 2015, 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT).

[13]  Nabil Derbel,et al.  Optimal trajectory of a mobile robot using hierarchical fuzzy logic controller , 2016, Int. J. Comput. Appl. Technol..

[14]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems: type-reduction , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[15]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[16]  Alexander Gloye,et al.  Holonomic Control of a robot with an omni- directional drive , 2005 .

[17]  Feng Tian,et al.  A navigation control strategy with hybrid architecture for rescue robot , 2010, 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[18]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[19]  Moussa Haddad,et al.  A hybrid approach for autonomous navigation of mobile robots in partially-known environments , 2016, Robotics Auton. Syst..

[20]  S. Tang,et al.  A review of control architectures for autonomous navigation of mobile robots , 2011 .

[21]  Adrian Filipescu,et al.  Sliding-mode control for trajectory-tracking of a Wheeled Mobile Robot in presence of uncertainties , 2009, 2009 7th Asian Control Conference.

[22]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[23]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[24]  Maïssa Boujelben,et al.  Interv al type-2 TSK fuzzy approach for autonomous mobile robot control in presence of uncertainties , 2017, 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD).

[25]  Oscar Castillo,et al.  Review of Recent Type-2 Fuzzy Controller Applications , 2016, Algorithms.

[26]  Nabil Derbel,et al.  A hybrid fuzzy-sliding mode controller for a mobile robot , 2016, Int. J. Model. Identif. Control..

[27]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[28]  N. Derbel,et al.  Hierarchical fuzzy controller for a nonholonomic mobile robot , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[29]  Pierre Payeur,et al.  A hybrid control architecture for autonomous mobile robot navigation in unknown dynamic environment , 2015, 2015 IEEE International Conference on Automation Science and Engineering (CASE).

[30]  Rogelio Lozano,et al.  Chattering-Free Sliding Mode Altitude Control for a Quad-Rotor Aircraft: Real-Time Application , 2014, J. Intell. Robotic Syst..

[31]  Moussa Haddad,et al.  Hybrid control architecture for mobile robots navigation in partially known environments , 2014, 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO).

[32]  N. N. Karnik,et al.  Introduction to type-2 fuzzy logic systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).