Synchronization and assembly formation in the visual cortex.

Publisher Summary This chapter describes the experimental findings demonstrating that distributed neural populations in the visual cortex process information in a cooperative way. Evidence accumulated that temporal relations among the responses of concurrently activated neurons convey information, which is unavailable from the single-cell responses alone. A large body of data is compatible with the hypothesis that visual objects are represented by assemblies of synchronously firing neurons. The experimental approaches used in the chapter range from the level of multiple single cells to EEG and MEG recordings and from anaesthetized animal preparations to human experiments with active costive tasks. The central claim of the temporal binding hypothesis is that, relations between features in visual space are represented by synchronization of neural responses, but the concept neither specifies what elementary features are used as building blocks for ensemble formation nor how they are encoded. Therefore, the synchronous assembly concept is compatible with the existence of very different levels of receptive fields (RF) complexity along the non-classical, state-dependent, and visual pathways. The temporal binding hypothesis is also compatible with different strategies how elementary pieces of information are encoded. Evidence for the relevance of precise spike timing of single-cell responses for information processing in the visual cortex casts doubts on average firing rate as the dominant code is used in neuronal processing.

[1]  G. Ermentrout,et al.  Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. , 1984 .

[2]  George L. Gerstein,et al.  Design of a laboratory for multineuron studies , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Paul Antoine Salin,et al.  Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. , 1992, Visual neuroscience.

[4]  W Singer,et al.  Patterns of Synchronization in the Superior Colliculus of Anesthetized Cats , 1999, The Journal of Neuroscience.

[5]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[6]  O Bertrand,et al.  Combined EEG and MEG recordings of visual 40 Hz responses to illusory triangles in human , 1997, Neuroreport.

[7]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  W. Singer,et al.  Correlation analysis of corticotectal interactions in the cat visual system. , 1998, Journal of neurophysiology.

[9]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[10]  A. Aertsen,et al.  Dynamic Aspects of Neuronal Cooperativity: Fast Stimulus-Locked Modulations of Effective Connectivity , 1991 .

[11]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[13]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[14]  Y. Miyashita,et al.  Neuronal tuning to learned complex forms in vision. , 1994, Neuroreport.

[15]  R. Eckhorn Neural Mechanisms of Visual Feature Binding Investigated with Microelectrodes and Models , 1999 .

[16]  J. Bullier,et al.  Parallel versus serial processing: new vistas on the distributed organization of the visual system , 1995, Current Opinion in Neurobiology.

[17]  Hansel,et al.  Synchronization and computation in a chaotic neural network. , 1992, Physical review letters.

[18]  I. Ohzawa,et al.  Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex. , 1994, Journal of neurophysiology.

[19]  W. Singer,et al.  The formation of cooperative cell assemblies in the visual cortex. , 1990, The Journal of experimental biology.

[20]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[21]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[22]  Pieter R. Roelfsema,et al.  How Precise is Neuronal Synchronization? , 1995, Neural Computation.

[23]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[24]  D. P. Russell,et al.  Increased Synchronization of Neuromagnetic Responses during Conscious Perception , 1999, The Journal of Neuroscience.

[25]  D. Pollen,et al.  Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat's visual cortex , 1992, Vision Research.

[26]  Rainer Goebel,et al.  Motion perception and motion imagery: New evidence of constructive brain processes from functional magnetic resonance imaging studies , 1999 .

[27]  J Bullier,et al.  Structural basis of cortical synchronization. II. Effects of cortical lesions. , 1995, Journal of neurophysiology.

[28]  P König,et al.  Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G. P. Moore,et al.  Statistical signs of synaptic interaction in neurons. , 1970, Biophysical journal.

[30]  W. Singer,et al.  Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex , 1999, Journal of Neuroscience Methods.

[31]  N. Birbaumer,et al.  High-frequency brain activity: Its possible role in attention, perception and language processing , 1997, Progress in Neurobiology.

[32]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[33]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[34]  Braitenberg,et al.  Brain theory : biological basis and computational principles , 1996 .

[35]  W. Singer,et al.  Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17. , 1995, Neuroreport.

[36]  Wolf Singer,et al.  Chapter 37 Neuronal representations, assemblies and temporal coherence , 1993 .

[37]  E T Rolls,et al.  Correlations and the encoding of information in the nervous system , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[39]  J D Victor,et al.  Temporal aspects of neural coding in the retina and lateral geniculate. , 1999, Network.

[40]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[41]  H. Tamura,et al.  Development of local horizontal interactions in cat visual cortex studied by cross-correlation analysis. , 1993, Journal of neurophysiology.

[42]  Reinhard Eckhorn,et al.  Neural mechanisms of scene segmentation: recordings from the visual cortex suggest basic circuits for linking field models , 1999, IEEE Trans. Neural Networks.

[43]  A. Revonsuo,et al.  The neural generation of a unified illusion in human vision , 1997, Neuroreport.

[44]  F. Varela,et al.  Visually Triggered Neuronal Oscillations in the Pigeon: An Autocorrelation Study of Tectal Activity , 1993, The European journal of neuroscience.

[45]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[46]  L. Paninski,et al.  Information about movement direction obtained from synchronous activity of motor cortical neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Charles Samuel Harris,et al.  Visual coding and adaptability , 1980 .

[48]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[49]  Shie Qian,et al.  Discrete Gabor transform , 1993, IEEE Trans. Signal Process..

[50]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[51]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[52]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[53]  Matthias M. Müller,et al.  Selective visual-spatial attention alters induced gamma band responses in the human EEG , 1999, Clinical Neurophysiology.

[54]  Geoffrey E. Hinton Shape Representation in Parallel Systems , 1981, IJCAI.

[55]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[56]  Matthias M. Müller,et al.  Processing of affective pictures modulates right-hemispheric gamma band EEG activity , 1999, Clinical Neurophysiology.

[57]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[58]  M Barinaga How the nose knows: olfactory receptor cloned. , 1991, Science.

[59]  A P Georgopoulos,et al.  Neural coding of the direction of reaching and a comparison with saccadic eye movements. , 1990, Cold Spring Harbor symposia on quantitative biology.

[60]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[61]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[62]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[63]  R. Bickford,et al.  Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. , 1960, Electroencephalography and clinical neurophysiology.

[64]  W Singer,et al.  Role of the temporal domain for response selection and perceptual binding. , 1997, Cerebral cortex.

[65]  Victor A. F. Lamme,et al.  Functional connectivity within the visual cortex of the rat shows state changes , 1998, The European journal of neuroscience.

[66]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. , 1990, Journal of neurophysiology.

[67]  Sompolinsky,et al.  Cooperative dynamics in visual processing. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[68]  W. Singer,et al.  Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[69]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[70]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[71]  E N Brown,et al.  A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells , 1998, The Journal of Neuroscience.

[72]  Matthias M. Müller,et al.  Visually induced gamma‐band responses to coherent and incoherent motion: a replication study , 1997, Neuroreport.

[73]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[74]  George L. Gerstein,et al.  Neuronal Population Coding and the Elephant , 1992 .

[75]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  R. Eckhorn,et al.  Stimulus-dependent modulations of correlated high-frequency oscillations in cat visual cortex. , 1997, Cerebral cortex.

[77]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[78]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[79]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. , 1997, Cerebral cortex.

[80]  A Aertsen,et al.  Coherent activity in neuronal populations: analysis and interpretation , 1987 .

[81]  H. L. Bryant,et al.  Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs. , 1973, Journal of neurophysiology.

[82]  R. Eckhorn,et al.  Synchronous High‐frequency Oscillations in Cat Area 18 , 1995, The European journal of neuroscience.

[83]  W. Singer,et al.  Precisely Synchronized Oscillatory Firing Patterns Require Electroencephalographic Activation , 1999, The Journal of Neuroscience.

[84]  O. Bertrand,et al.  Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans , 1999, Visual Neuroscience.

[85]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[86]  W. Singer,et al.  The response of cat visual cortex to flicker stimuli of variable frequency , 1998, The European journal of neuroscience.

[87]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[88]  T H Bullock,et al.  Dynamic properties of human visual evoked and omitted stimulus potentials. , 1994, Electroencephalography and clinical neurophysiology.

[89]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[90]  D. James Surmeier,et al.  The relationship between cross-correlation measures and underlying synaptic events , 1985, Brain Research.

[91]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[92]  Purvis Bedenbaugh,et al.  Multiunit Normalized Cross Correlation Differs from the Average Single-Unit Normalized Correlation , 1997, Neural Computation.

[93]  J. Bullier,et al.  Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. , 1995, Journal of neurophysiology.

[94]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[95]  T J Gawne Temporal coding as a means of information transfer in the primate visual system. , 1999, Critical reviews in neurobiology.

[96]  R. Eckhorn,et al.  High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. , 1993, Neuroreport.

[97]  W. Singer,et al.  Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential , 1998, Neuroscience.

[98]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[99]  H. Tamura,et al.  Horizontal interactions between visual cortical neurones studied by cross‐correlation analysis in the cat. , 1991, The Journal of physiology.

[100]  S. Grossberg How does a brain build a cognitive code , 1980 .

[101]  Matthias M. Müller,et al.  Human Gamma Band Activity and Perception of a Gestalt , 1999, The Journal of Neuroscience.

[102]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[103]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[104]  James L. McClelland,et al.  Open Questions About Computation in Cerebral Cortex , 1987 .

[105]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[106]  M. Abeles Role of the cortical neuron: integrator or coincidence detector? , 1982, Israel journal of medical sciences.

[107]  A. Aertsen,et al.  Dynamics of neuronal interactions in monkey cortex in relation to behavioural events , 1995, Nature.

[108]  L. Krubitzer The organization of neocortex in mammals: are species differences really so different? , 1995, Trends in Neurosciences.

[109]  E. Fetz,et al.  Synaptic Interactions between Primate Precentral Cortex Neurons Revealed by Spike-Triggered Averaging of Intracellular Membrane Potentials In Vivo , 1996, The Journal of Neuroscience.

[110]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[111]  R. Freeman,et al.  Oscillatory discharge in the visual system: does it have a functional role? , 1992, Journal of neurophysiology.

[112]  D. Perrett,et al.  The `Ideal Homunculus': decoding neural population signals , 1998, Trends in Neurosciences.

[113]  Stephen Grossberg,et al.  Synchronized oscillations during cooperative feature linking in a cortical model of visual perception , 1991, Neural Networks.

[114]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[115]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[116]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[117]  J. Martinerie,et al.  Synchrony in Gamma-band Oscillations in Human Intracortical Recordings during Visual Discrimination. , 1998, NeuroImage.

[118]  R. Cans Obituary: Jacques-Yves Cousteau (1910-97) , 1997, Nature.

[119]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  A. Aertsen,et al.  Response synchronization in the visual cortex , 1993, Current Opinion in Neurobiology.

[121]  P. Roelfsema Solutions for the Binding Problem , 1998, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[122]  E Başar,et al.  Frontal gamma-band enhancement during multistable visual perception. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[123]  T. Sanger,et al.  Probability density estimation for the interpretation of neural population codes. , 1996, Journal of neurophysiology.

[124]  S. Molotchnikoff,et al.  Stimulus-dependent oscillations in the cat visual cortex: differences between bar and grating stimuli , 1996, Brain Research.

[125]  Joachim M. Buhmann,et al.  Pattern Segmentation in Associative Memory , 1990, Neural Computation.

[126]  C. Gray,et al.  Heterogeneity in local distributions of orientation-selective neurons in the cat primary visual cortex , 1996, Visual Neuroscience.

[127]  Terrence J. Sejnowski,et al.  Neuronal Tuning: To Sharpen or Broaden? , 1999, Neural Computation.

[128]  Richard Kronland-Martinet,et al.  Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..

[129]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[130]  P. Kirkwood On the use and interpretation of cross-correlation measurements in the mammalian central nervous system , 1979, Journal of Neuroscience Methods.

[131]  M. Abeles,et al.  Multispike train analysis , 1977, Proceedings of the IEEE.

[132]  Simone Cardoso Synchronization of Neuronal Activity during Stimulus Expectation in a Direction Discrimination Task , 1997 .

[133]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[134]  Ad Aertsen,et al.  From Synchrony to Harmony: Ideas on the Function of Neural Assemblies and on the Interpretation of Neural Synchrony , 1986 .

[135]  Robert Galambos,et al.  A Comparison of Certain Gamma Band (40-HZ) Brain Rhythms in Cat and Man , 1992 .

[136]  S. Grossberg How does the brain build a cognitive code , 1988 .

[137]  P König,et al.  Formation of cortical cell assemblies. , 1990, Cold Spring Harbor symposia on quantitative biology.

[138]  J. Cronly-Dillon,et al.  Vision and visual dysfunction. , 1994, Journal of cognitive neuroscience.

[139]  Richard Kronland-Martinet,et al.  Reading and Understanding Continuous Wavelet Transforms , 1989 .

[140]  R. Eckhorn,et al.  Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. , 1994, Neuroreport.

[141]  Catherine Tallon-Baudry,et al.  Time-Frequency Analysis of Oscillatory Gamma-Band Activity: Wavelet Approach and Phase-Locking Estimation , 2000 .

[142]  W. Singer,et al.  In search of common foundations for cortical computation , 1997, Behavioral and Brain Sciences.

[143]  George L. Gerstein,et al.  From Neuron to Assembly: Neuronal Organization and Stimulus Representation , 1986 .

[144]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[145]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[146]  S. Molotchnikoff,et al.  The Lateral Posterior-Pulvinar Complex Modulation of Stimulus-dependent Oscillations in the Cat Visual Cortex , 1996, Vision Research.

[147]  J. Konorski Integrative activity of the brain , 1967 .

[148]  K. Tanaka,et al.  Organization of cat visual cortex as investigated by cross-correlation technique. , 1981, Journal of neurophysiology.

[149]  Joel L. Davis,et al.  Neuronal ensembles : strategies for recording and decoding , 2000 .

[150]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[151]  Matthias M. Müller,et al.  The time course of cortical facilitation during cued shifts of spatial attention , 1998, Nature Neuroscience.

[152]  A. Aertsen,et al.  Evaluation of neuronal connectivity: Sensitivity of cross-correlation , 1985, Brain Research.

[153]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[154]  D. Perkel,et al.  Simultaneously Recorded Trains of Action Potentials: Analysis and Functional Interpretation , 1969, Science.

[155]  J. Bolz,et al.  Functional specificity of a long-range horizontal connection in cat visual cortex: a cross-correlation study , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[156]  J. Pernier,et al.  Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans , 1997, The Journal of Neuroscience.

[157]  Wolf Singer,et al.  On the Role of Neural Synchrony in the Primate Visual Cortex , 1996 .

[158]  M. Abeles Local Cortical Circuits: An Electrophysiological Study , 1982 .

[159]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[160]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[161]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[162]  Anne Treisman,et al.  Properties, Parts, and Objects , 1986 .

[163]  N. Logothetis Single units and conscious vision. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[164]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[165]  C W SEM-JACOBSEN,et al.  Electroencephalographic rhythms from the depths of the parietal, occipital and temporal lobes in man. , 1956, Electroencephalography and clinical neurophysiology.

[166]  K. Hoffmann,et al.  Synchronization of Neuronal Activity during Stimulus Expectation in a Direction Discrimination Task , 1997, The Journal of Neuroscience.

[167]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[168]  D. V. Reddy,et al.  Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators , 2000 .

[169]  W Singer,et al.  Neuronal representations, assemblies and temporal coherence. , 1993, Progress in brain research.

[170]  Matthias M. Müller Oscillatory cortical activities in the human brain , 1997 .

[171]  A. Aertsen,et al.  Neuronal assemblies , 1989, IEEE Transactions on Biomedical Engineering.

[172]  H. Tamura,et al.  Inhibition contributes to orientation selectivity in visual cortex of cat , 1988, Nature.

[173]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[174]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[175]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[176]  E. Basar,et al.  Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[177]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[178]  Ph. Tchamitchian,et al.  Wavelets: Time-Frequency Methods and Phase Space , 1992 .

[179]  M. Steriade,et al.  Intracortical and corticothalamic coherency of fast spontaneous oscillations. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[180]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[181]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[182]  F. Varela Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. , 1995, Biological research.

[183]  D. P. Russell,et al.  Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[184]  T. Albright,et al.  Gauging sensory representations in the brain , 1999, Trends in Neurosciences.

[185]  C. Gilbert,et al.  Topography of contextual modulations mediated by short-range interactions in primary visual cortex , 1999, Nature.

[186]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[187]  W. Singer,et al.  Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey , 1992, The European journal of neuroscience.

[188]  Peter König,et al.  Stimulus-Dependent Assembly Formation of Oscillatory Responses: I. Synchronization , 1991, Neural Computation.

[189]  M P Young,et al.  Indeterminate Organization of the Visual System , 1996, Science.

[190]  F Mechler,et al.  Robust Temporal Coding of Contrast by V1 Neurons for Transient But Not for Steady-State Stimuli , 1998, The Journal of Neuroscience.

[191]  Christian W. Eurich,et al.  Multidimensional Encoding Strategy of Spiking Neurons , 2000, Neural Computation.

[192]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[193]  M. Brazier,et al.  Architectonics of the cerebral cortex , 1978 .

[194]  K A Martin,et al.  A brief history of the "feature detector". , 1994, Cerebral cortex.

[195]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[196]  W. Singer,et al.  Relation between oscillatory activity and long-range synchronization in cat visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[197]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[198]  W. Freeman,et al.  Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey , 1987, Brain Research.

[199]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[200]  C. Sherrington MAN ON HIS NATURE , 1941 .

[201]  S. Zeki A vision of the brain , 1993 .

[202]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[203]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[204]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[205]  Y. Sakurai How do cell assemblies encode information in the brain? , 1999, Neuroscience & Biobehavioral Reviews.

[206]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[207]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[208]  T. Bullock,et al.  Induced Rhythms in the Brain , 1992, Brain Dynamics.

[209]  Nicolas J. Kerscher,et al.  State-dependent receptive-field restructuring in the visual cortex , 1998, Nature.

[210]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[211]  J. Krtiger Multimicroelectrode Investigation of Monkey Striate Cortex : Spike Train Correlations in the Infragranular Layers , 2001 .

[212]  J. Donoghue,et al.  Neuronal Interactions Improve Cortical Population Coding of Movement Direction , 1999, The Journal of Neuroscience.

[213]  H. Kappen Stimulus-dependent correlations in stochastic networks , 1997 .

[214]  J. Bullier,et al.  Cross-correlation study of the temporal interactions between areas V1 and V2 of the macaque monkey. , 1999, Journal of neurophysiology.

[215]  K. Alloway,et al.  Synchronization of local neural networks in the somatosensory cortex: A comparison of stationary and moving stimuli. , 1999, Journal of neurophysiology.

[216]  I Shimoyama,et al.  Attention changes the peak latency of the visual gamma-band oscillation of the EEG. , 1999, Neuroreport.

[217]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[218]  M. Margulis,et al.  Temporal integration can readily switch between sublinear and supralinear summation. , 1998, Journal of neurophysiology.

[219]  Helmut Schwegler,et al.  Coarse coding: calculation of the resolution achieved by a population of large receptive field neurons , 1997, Biological Cybernetics.

[220]  H Sompolinsky,et al.  Global processing of visual stimuli in a neural network of coupled oscillators. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[221]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[222]  G Tononi,et al.  Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[223]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[224]  G. Orban,et al.  Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. , 1994, Journal of neurophysiology.

[225]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[226]  Peter König,et al.  Stimulus-Dependent Assembly Formation of Oscillatory Responses: II. Desynchronization , 1991, Neural Computation.

[227]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[228]  W. Singer,et al.  Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. , 1992, Science.

[229]  A W Roe,et al.  Specificity of color connectivity between primate V1 and V2. , 1999, Journal of neurophysiology.

[230]  M. Livingstone Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. , 1996, Journal of neurophysiology.

[231]  C. Herrmann,et al.  Gamma responses and ERPs in a visual classification task , 1999, Clinical Neurophysiology.

[232]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[233]  T. Elbert,et al.  Visual stimulation alters local 40-Hz responses in humans: an EEG-study , 1995, Neuroscience Letters.

[234]  G. Ermentrout,et al.  Phase transition and other phenomena in chains of coupled oscilators , 1990 .

[235]  R. Reid,et al.  Synchronous activity in the visual system. , 1999, Annual review of physiology.

[236]  W. Bair Spike timing in the mammalian visual system , 1999, Current Opinion in Neurobiology.

[237]  A. Treisman The binding problem , 1996, Current Opinion in Neurobiology.

[238]  C. Gray,et al.  Cellular Mechanisms Contributing to Response Variability of Cortical Neurons In Vivo , 1999, The Journal of Neuroscience.

[239]  M. Meister Multineuronal codes in retinal signaling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[240]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[241]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[242]  Christof Koch,et al.  Coding of Time-Varying Signals in Spike Trains of Integrate-and-Fire Neurons with Random Threshold , 1999, Neural Computation.

[243]  David L. Sheinberg,et al.  The role of temporal cortical areas in perceptual organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[244]  W. Singer,et al.  Neuronal assemblies: necessity, signature and detectability , 1997, Trends in Cognitive Sciences.

[245]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[246]  Bernardo A. Huberman,et al.  Binding Hierarchies: A Basis for Dynamic Perceptual Grouping , 1992, Neural Computation.

[247]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[248]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[249]  D. Ferster,et al.  Synchronous Membrane Potential Fluctuations in Neurons of the Cat Visual Cortex , 1999, Neuron.

[250]  C. Perez-Borja,et al.  Depth electrographic studies of a focal fast response to sensory stimulation in the human , 1961 .

[251]  E. Vaadia,et al.  Spatiotemporal structure of cortical activity: properties and behavioral relevance. , 1998, Journal of neurophysiology.

[252]  C. von der Malsburg,et al.  Am I Thinking Assemblies , 1986 .

[253]  P König,et al.  Direct physiological evidence for scene segmentation by temporal coding. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[254]  S. Bressler The gamma wave: a cortical information carrier? , 1990, Trends in Neurosciences.

[255]  Bruce L. McNaughton,et al.  The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records , 1983, Journal of Neuroscience Methods.

[256]  T. Albright,et al.  Efficient Discrimination of Temporal Patterns by Motion-Sensitive Neurons in Primate Visual Cortex , 1998, Neuron.

[257]  Christoph Braun,et al.  Coherence of gamma-band EEG activity as a basis for associative learning , 1999, Nature.

[258]  Christof Koch,et al.  Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey , 1999, Neural Computation.

[259]  Angela D. Friederici,et al.  Learning : rule extraction and representation , 1999 .