Distinct Dendritic Arborization and In Vivo Firing Patterns of Parvalbumin-Expressing Basket Cells in the Hippocampal Area CA3

Hippocampal CA3 area generates temporally structured network activity such as sharp waves and gamma and theta oscillations. Parvalbumin-expressing basket cells, making GABAergic synapses onto cell bodies and proximal dendrites of pyramidal cells, control pyramidal cell activity and participate in network oscillations in slice preparations, but their roles in vivo remain to be tested. We have recorded the spike timing of parvalbumin-expressing basket cells in areas CA2/3 of anesthetized rats in relation to CA3 putative pyramidal cell firing and activity locally and in area CA1. During theta oscillations, CA2/3 basket cells fired on the same phase as putative pyramidal cells, but, surprisingly, significantly later than downstream CA1 basket cells. This indicates a distinct modulation of CA3 and CA1 pyramidal cells by basket cells, which receive different inputs. We observed unexpectedly large dendritic arborization of CA2/3 basket cells in stratum lacunosum moleculare (33% of length, 29% surface, and 24% synaptic input from a total of ∼35,000), different from the dendritic arborizations of CA1 basket cells. Area CA2/3 basket cells fired phase locked to both CA2/3 and CA1 gamma oscillations, and increased firing during CA1 sharp waves, thus supporting the role of CA3 networks in the generation of gamma oscillations and sharp waves. However, during ripples associated with sharp waves, firing of CA2/3 basket cells was phase locked only to local but not CA1 ripples, suggesting the independent generation of fast oscillations by basket cells in CA1 and CA2/3. The distinct spike timing of basket cells during oscillations in CA1 and CA2/3 suggests differences in synaptic inputs paralleled by differences in dendritic arborizations.

[1]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[2]  G. Buzsáki Hippocampal sharp waves: Their origin and significance , 1986, Brain Research.

[3]  Michael Frotscher,et al.  Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: A combined light and electron microscopic study , 1985, The Journal of comparative neurology.

[4]  György Buzsáki,et al.  Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons , 2006, The European journal of neuroscience.

[5]  Norbert Hájos,et al.  Synaptic Currents in Anatomically Identified CA3 Neurons during Hippocampal Gamma Oscillations In Vitro , 2006, The Journal of Neuroscience.

[6]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[7]  N. Tamamaki,et al.  Complete Axon Arborization of a Single CA3 Pyramidal Cell in the Rat Hippocampus, and its Relationship With Postsynaptic Parvalbumin‐containing Interneurons , 1993, The European journal of neuroscience.

[8]  M. Quirk,et al.  Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience , 2003, Neuron.

[9]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.

[10]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[11]  J. Csicsvari,et al.  Intracellular features predicted by extracellular recordings in the hippocampus in vivo. , 2000, Journal of neurophysiology.

[12]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[13]  Michael Lagler,et al.  Behavior-dependent specialization of identified hippocampal interneurons , 2012, Nature Neuroscience.

[14]  R. Miles,et al.  Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea‐pig in vitro. , 1990, The Journal of physiology.

[15]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[16]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[17]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[18]  Jan Konopacki,et al.  Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells. , 2002, Journal of neurophysiology.

[19]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[20]  R. Llinás,et al.  The neuronal basis for consciousness. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Fiona E. N. LeBeau,et al.  A Model of Atropine‐Resistant Theta Oscillations in Rat Hippocampal Area CA1 , 2002, The Journal of physiology.

[23]  R K Wong,et al.  Unitary inhibitory synaptic potentials in the guinea‐pig hippocampus in vitro. , 1984, The Journal of physiology.

[24]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[25]  Lynn Hazan,et al.  Klusters, NeuroScope, NDManager: A free software suite for neurophysiological data processing and visualization , 2006, Journal of Neuroscience Methods.

[26]  Zachary M Grinspan,et al.  Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus , 2004, The Journal of physiology.

[27]  Adriano B. L. Tort,et al.  Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons , 2009, Proceedings of the National Academy of Sciences.

[28]  P. Good,et al.  Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses , 1995 .

[29]  M. Frotscher Mossy fibres form synapses with identified pyramidal basket cells in the CA3 region of the guinea-pig hippocampus: a combined Golgi-electron microscope study , 1985, Journal of neurocytology.

[30]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[31]  U. Heinemann,et al.  Induction of sharp wave–ripple complexes in vitro and reorganization of hippocampal networks , 2005, Nature Neuroscience.

[32]  Hannah Monyer,et al.  Augmented Hippocampal Ripple Oscillations in Mice with Reduced Fast Excitation onto Parvalbumin-Positive Cells , 2009, The Journal of Neuroscience.

[33]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[34]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[35]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[36]  J. Knierim,et al.  Hippocampal place cells: Parallel input streams, subregional processing, and implications for episodic memory , 2006, Hippocampus.

[37]  P. Jonas,et al.  Dendritic Mechanisms Underlying Rapid Synaptic Activation of Fast-Spiking Hippocampal Interneurons , 2010, Science.

[38]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[39]  P. Somogyi,et al.  Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus , 1997, Neuroscience.

[40]  L. Kellényi,et al.  Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: Current-source density analysis, effects of urethane and atropine , 1986, Brain Research.

[41]  J. Csicsvari,et al.  Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events , 2000, Neuron.

[42]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[43]  Urs Gerber,et al.  A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit , 2004, Nature.

[44]  Sean M Montgomery,et al.  Relationships between Hippocampal Sharp Waves, Ripples, and Fast Gamma Oscillation: Influence of Dentate and Entorhinal Cortical Activity , 2011, The Journal of Neuroscience.

[45]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[46]  G. Buzsáki,et al.  Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies , 2006, Neuron.

[47]  F. Gallyas,et al.  Granule cells are the main source of excitatory input to a subpopulation of GABAergic hippocampal neurons as revealed by electron microscopic double staining for zinc histochemistry and parvalbumin immunocytochemistry , 2001, Experimental Brain Research.

[48]  A. Thomson,et al.  Modulation of inhibitory autapses and synapses on rat CA1 interneurones by GABAa receptor ligands , 2003, The Journal of physiology.

[49]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[50]  Mu-ming Poo,et al.  Spike Train Timing-Dependent Associative Modification of Hippocampal CA3 Recurrent Synapses by Mossy Fibers , 2004, Neuron.

[51]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[52]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[53]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[54]  P. Somogyi,et al.  Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus , 1996, Hippocampus.

[55]  M. Frotscher Mossy fiber synapses on glutamate decarboxylase-immunoreactive neurons: evidence for feed-forward inhibition in the CA3 region of the hippocampus , 2004, Experimental Brain Research.

[56]  Christof Koch,et al.  The Spiking Component of Oscillatory Extracellular Potentials in the Rat Hippocampus , 2012, The Journal of Neuroscience.

[57]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[58]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[59]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[60]  Lucia Wittner,et al.  Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures , 2002, The Journal of physiology.

[61]  G. Buzsáki,et al.  Entorhinal cortical innervation of parvalbumin‐containing neurons (basket and chandelier cells) in the rat ammon's horn , 1998, Hippocampus.

[62]  Alex M Thomson,et al.  Characterization of Neurons in the CA2 Subfield of the Adult Rat Hippocampus , 2007, The Journal of Neuroscience.

[63]  C. Stark,et al.  Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus , 2008, Science.

[64]  K. Harris Neural signatures of cell assembly organization , 2005, Nature Reviews Neuroscience.

[65]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[66]  M. Stewart,et al.  Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators , 1993, Brain Research.

[67]  Ivan Soltesz,et al.  Functional Specificity of Mossy Fiber Innervation of GABAergic Cells in the Hippocampus , 2009, The Journal of Neuroscience.

[68]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[69]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[70]  M. Woodin,et al.  Disinhibition Mediates a Form of Hippocampal Long-Term Potentiation in Area CA1 , 2009, PloS one.

[71]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[72]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[73]  P. Somogyi,et al.  Immunolocalization of metabotropic glutamate receptor 1α (mGluR1α) in distinct classes of interneuron in the CA1 region of the rat hippocampus , 2004, Hippocampus.

[74]  B. Rudy,et al.  Developmental expression and functional characterization of the potassium-channel subunit Kv3.1b in parvalbumin-containing interneurons of the rat hippocampus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  W. Cowan,et al.  An autoradiographic study of the organization of intrahippocampal association pathways in the rat , 1978, The Journal of comparative neurology.

[76]  Sean M Montgomery,et al.  Theta and Gamma Coordination of Hippocampal Networks during Waking and Rapid Eye Movement Sleep , 2008, The Journal of Neuroscience.

[77]  Marc W Howard,et al.  Gamma oscillations correlate with working memory load in humans. , 2003, Cerebral cortex.

[78]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[79]  G. Buzsáki,et al.  tFast Network Oscillations in the Hippocampal CA1 Region of the Behaving Rat , 1999, The Journal of Neuroscience.

[80]  Edward O. Mann,et al.  Perisomatic Feedback Inhibition Underlies Cholinergically Induced Fast Network Oscillations in the Rat Hippocampus In Vitro , 2005, Neuron.

[81]  F. Gallyas,et al.  Granule cells are the main source of excitatory input to a subpopulation of GABAergic hippocampal neurons as revealed by electron microscopic double staining for zinc histochemistry and parvalbumin immunocytochemistry , 2001, Experimental Brain Research.

[82]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[83]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[84]  U. Eysel,et al.  Functional and Structural Topography of Horizontal Inhibitory Connections in Cat Visual Cortex , 1993, The European journal of neuroscience.

[85]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[86]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[87]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[88]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[89]  Peter Jonas,et al.  Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons , 2009, Proceedings of the National Academy of Sciences.

[90]  Ole Paulsen,et al.  Priming of Hippocampal Population Bursts by Individual Perisomatic-Targeting Interneurons , 2010, The Journal of Neuroscience.

[91]  J. B. Ranck,et al.  Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats , 2004, Experimental Brain Research.

[92]  Thomas Klausberger,et al.  Terminal Field and Firing Selectivity of Cholecystokinin-Expressing Interneurons in the Hippocampal CA3 Area , 2011, The Journal of Neuroscience.

[93]  Z. Borhegyi,et al.  GABAergic Neurons of the Medial Septum Lead the Hippocampal Network during Theta Activity , 2009, The Journal of Neuroscience.

[94]  T. Kosaka,et al.  Gap Junctions Linking the Dendritic Network of GABAergic Interneurons in the Hippocampus , 2000, The Journal of Neuroscience.

[95]  O. Paulsen,et al.  Spike Timing of Distinct Types of GABAergic Interneuron during Hippocampal Gamma Oscillations In Vitro , 2004, The Journal of Neuroscience.

[96]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[97]  A. Destexhe,et al.  Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices , 1999, Neuroscience.

[98]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[99]  K. Tóth,et al.  Differential Mechanisms of Transmission at Three Types of Mossy Fiber Synapse , 2000, The Journal of Neuroscience.

[100]  A. Thomson,et al.  Local circuitry involving parvalbumin‐positive basket cells in the CA2 region of the hippocampus , 2012, Hippocampus.

[101]  György Buzsáki,et al.  Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance , 2007, Proceedings of the National Academy of Sciences.

[102]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[103]  H. Ishizuka,et al.  Immunoelectron microscopic observations of hypothalamic TRH-containing neurons in rats , 2004, Experimental Brain Research.

[104]  F. Edward Dudek,et al.  Local synaptic circuits in rat hippocampus: interactions between pyramidal cells , 1980, Brain Research.

[105]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[106]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.