Uncertainty-driven view planning for underwater inspection

We discuss the problem of inspecting an underwater structure, such as a submerged ship hull, with an autonomous underwater vehicle (AUV). In such scenarios, the goal is to construct an accurate 3D model of the structure and to detect any anomalies (e.g., foreign objects or deformations). We propose a method for constructing 3D meshes from sonar-derived point clouds that provides watertight surfaces, and we introduce uncertainty modeling through non-parametric Bayesian regression. Uncertainty modeling provides novel cost functions for planning the path of the AUV to minimize a metric of inspection performance. We draw connections between the resulting cost functions and submodular optimization, which provides insight into the formal properties of active perception problems. In addition, we present experimental trials that utilize profiling sonar data from ship hull inspection.

[1]  C. Rasmussen,et al.  Nonstationary Gaussian Process Regression using a Latent Extension of the Input Space , 2006 .

[2]  Shengyong Chen,et al.  Vision sensor planning for 3-D model acquisition , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Andrew Fitzgibbon,et al.  Gaussian Process Implicit Surfaces , 2006 .

[4]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[5]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[6]  Franz S. Hover,et al.  A Vehicle System for Autonomous Relative Survey of In-Water Ships , 2007 .

[7]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[8]  Franz S. Hover,et al.  Planning Complex Inspection Tasks Using Redundant Roadmaps , 2011, ISRR.

[9]  Donna M. Kocak,et al.  A Focus on Recent Developments and Trends in Underwater Imaging , 2008 .

[10]  David S. Wettergreen,et al.  Intelligent Maps for Autonomous Kilometer-Scale Science Survey , 2008 .

[11]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[12]  Geoffrey A. Hollinger,et al.  Active Classification: Theory and Application to Underwater Inspection , 2011, ISRR.

[13]  Marc Toussaint,et al.  Gaussian process implicit surfaces for shape estimation and grasping , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  C. Ian Connolly,et al.  The determination of next best views , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[15]  Hugh F. Durrant-Whyte,et al.  Gaussian Process modeling of large scale terrain , 2009, ICRA.

[16]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[17]  Tim Weyrich,et al.  Post-processing of Scanned 3D Surface Data , 2004, PBG.

[18]  Andreas Krause,et al.  Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization , 2010, COLT 2010.

[19]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[20]  Jan-Michael Frahm,et al.  Developing visual sensing strategies through next best view planning , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Joachim Denzler,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Subhashis Banerjee,et al.  Active recognition through next view planning: a survey , 2004, Pattern Recognit..

[23]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[24]  Abhimanyu Das,et al.  Algorithms for subset selection in linear regression , 2008, STOC.

[25]  Franz S. Hover,et al.  Imaging sonar-aided navigation for autonomous underwater harbor surveillance , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Alan Yuille,et al.  Active Vision , 2014, Computer Vision, A Reference Guide.

[27]  Daniel Cohen-Or,et al.  Consolidation of unorganized point clouds for surface reconstruction , 2009, ACM Trans. Graph..

[28]  H. B. McMahan,et al.  Robust Submodular Observation Selection , 2008 .

[29]  Forschungsinstitut für Diskrete Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003 .

[30]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[31]  Paolo Cignoni,et al.  MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.

[32]  Dorin Comaniciu,et al.  Conditional feature sensitivity: a unifying view on active recognition and feature selection , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[33]  E. Belcher,et al.  Dual-Frequency Identification Sonar (DIDSON) , 2002, Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No.02EX556).