Permissive Finite-State Controllers of POMDPs using Parameter Synthesis

Uncertainty in Artificial Intelligence: Thirty-Fourth Conference (2018) August 6-10, 2018, Monterey, California, USA

[1]  Christel Baier,et al.  Parametric Markov Chains: PCTL Complexity and Fraction-free Gaussian Elimination , 2017, GandALF.

[2]  Leonardo Mendonça de Moura,et al.  Solving non-linear arithmetic , 2012, ACCA.

[3]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[4]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[5]  Conrado Daws Symbolic and Parametric Model Checking of Discrete-Time Markov Chains , 2004, ICTAC.

[6]  Matthijs T. J. Spaan,et al.  Accelerated Vector Pruning for Optimal POMDP Solvers , 2017, AAAI.

[7]  Geoffrey J. Gordon,et al.  Finding Approximate POMDP solutions Through Belief Compression , 2011, J. Artif. Intell. Res..

[8]  D. Braziunas POMDP solution methods , 2003 .

[9]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[10]  Lijun Zhang,et al.  Model Repair for Markov Decision Processes , 2013, 2013 International Symposium on Theoretical Aspects of Software Engineering.

[11]  Mausam,et al.  A Theory of Goal-Oriented MDPs with Dead Ends , 2012, UAI.

[12]  Krishnendu Chatterjee,et al.  Optimal cost almost-sure reachability in POMDPs , 2014, Artif. Intell..

[13]  Carlo Ghezzi,et al.  Run-time efficient probabilistic model checking , 2011, 2011 33rd International Conference on Software Engineering (ICSE).

[14]  Gethin Norman,et al.  Verification and control of partially observable probabilistic systems , 2017, Real-Time Systems.

[15]  U. Rieder,et al.  Markov Decision Processes , 2010 .

[16]  Lijun Zhang,et al.  Probabilistic Reachability for Parametric Markov Models , 2009, SPIN.

[17]  Kee-Eung Kim,et al.  Solving POMDPs by Searching the Space of Finite Policies , 1999, UAI.

[18]  Krishnendu Chatterjee,et al.  What is decidable about partially observable Markov decision processes with ω-regular objectives , 2013, J. Comput. Syst. Sci..

[19]  Sebastian Junges,et al.  Sequential Convex Programming for the Efficient Verification of Parametric MDPs , 2017, TACAS.

[20]  Marta Z. Kwiatkowska,et al.  Permissive Controller Synthesis for Probabilistic Systems , 2014, TACAS.

[21]  Guy Shani,et al.  Noname manuscript No. (will be inserted by the editor) A Survey of Point-Based POMDP Solvers , 2022 .

[22]  François Charpillet,et al.  An Optimal Best-First Search Algorithm for Solving Infinite Horizon DEC-POMDPs , 2005, ECML.

[23]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[24]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[25]  Sebastian Junges,et al.  Safety-Constrained Reinforcement Learning for MDPs , 2015, TACAS.

[26]  David Barber,et al.  On the Computational Complexity of Stochastic Controller Optimization in POMDPs , 2011, TOCT.

[27]  Sebastian Junges,et al.  PROPhESY: A PRObabilistic ParamEter SYnthesis Tool , 2015, CAV.

[28]  W. B. Roberts,et al.  Machine Learning: The High Interest Credit Card of Technical Debt , 2014 .

[29]  Roberto Segala,et al.  Comparative analysis of bisimulation relations on alternating and non-alternating probabilistic models , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[30]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[31]  Sebastian Junges,et al.  A Storm is Coming: A Modern Probabilistic Model Checker , 2017, CAV.

[32]  Krishnendu Chatterjee,et al.  Trading memory for randomness , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[33]  Emilio Frazzoli,et al.  Control of probabilistic systems under dynamic, partially known environments with temporal logic specifications , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[34]  Shlomo Zilberstein,et al.  Optimizing fixed-size stochastic controllers for POMDPs and decentralized POMDPs , 2010, Autonomous Agents and Multi-Agent Systems.

[35]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[36]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[37]  Christel Baier,et al.  Principles of model checking , 2008 .

[38]  Sebastian Junges,et al.  Parameter Synthesis for Markov Models: Faster Than Ever , 2016, ATVA.

[39]  Krishnendu Chatterjee,et al.  A Symbolic SAT-Based Algorithm for Almost-Sure Reachability with Small Strategies in POMDPs , 2015, AAAI.

[40]  Anne Condon,et al.  On the Undecidability of Probabilistic Planning and Infinite-Horizon Partially Observable Markov Decision Problems , 1999, AAAI/IAAI.

[41]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[42]  Sebastian Junges,et al.  Synthesis in pMDPs: A Tale of 1001 Parameters , 2018, ATVA.