On the identification of nonlinear maps in a general interconnected system

This paper is concerned with the problem of identifying static nonlinear maps in a general, structured interconnected system. These static nonlinear maps are nonparametric in that they do not have a natural parameterization that is known or suggested from an analytical understanding of the underlying process. Our technique involves selecting the nonlinear maps so as to maximize the "smoothness" or "staticness" of these maps while respecting the available input-output data and the noise model. These techniques avoid bias problems that arise when imposing artificial parameterizations on the nonlinearities. Computationally, these methods reduce to iterative least squares problems together with Kalman smoothing. Preliminary examples reveal the promise of these techniques.

[1]  P. Stoica On the convergence of an iterative algorithm used for Hammerstein system identification , 1981 .

[2]  M. Thathachar,et al.  Identification of a class of non-linear systems† , 1973 .

[3]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[4]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[5]  K. Poolla,et al.  Identifiability issues in general interconnected systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[6]  Eric Walter,et al.  Identifiability of State Space Models , 1982 .

[7]  C. H. Chen,et al.  Maximum likelihood identification of stochastic Weiner-Hammerstein-type non-linear systems , 1992 .

[8]  Stephen P. Boyd,et al.  Uniqueness of circuits and systems containing one nonlinearity , 1985 .

[9]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[10]  M. Pawlak On the series expansion approach to the identification of Hammerstein systems , 1991 .

[11]  A. Krzyżak Identification of discrete Hammerstein systems by the Fourier series regression estimate , 1989 .

[12]  K. Glover,et al.  Identifiability of linear and nonlinear dynamical systems , 1976 .

[13]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[14]  Tor Arne Johansen,et al.  Identification of non-linear systems using empirical data and prior knowledge - an optimization approach , 1996, Autom..

[15]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[16]  R. Bellman,et al.  On structural identifiability , 1970 .

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  W. Greblicki Non-parametric orthogonal series identification of Hammerstein systems , 1989 .

[19]  Bernard Delyon,et al.  Nonlinear black-box models in system identification: Mathematical foundations , 1995, Autom..

[20]  Paul M. J. Van den Hof,et al.  Test for local structural identifiability of high-order non-linearly parametrized state space models , 1996, Autom..

[21]  Eric Walter,et al.  Identifiability of parametric models , 1987 .

[22]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[23]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[24]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[25]  Gerd Vandersteen,et al.  Measurement and identification of nonlinear systems consisting out of linear dynamic blocks and one static nonlinearity , 1997, IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings.

[26]  Philip E. Gill,et al.  Practical optimization , 1981 .

[27]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[28]  M. Boutayeb,et al.  A new technique for identification of MISO Hammerstein model , 1993, 1993 American Control Conference.

[29]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[30]  K. Poolla,et al.  An LFT approach to parameter estimation , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[31]  Adam Krzyzak On Identification of Discrete Hammerstein Systems by the Fourier Series Regression Estimate , 1988, 1988 American Control Conference.

[32]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .