Smith-Type Methods for Balanced Truncation of Large Sparse Systems

The matrices P ∈ R and Q ∈ R are called the reachability and observability gramians, respectively. Under the assumptions that A is asymptotically stable, i.e. λi(A) ∈ C− (the open left half-plane), and that Σ is minimal (that is the pairs (A,B) and (C,A) are, respectively, reachable and observable), the gramians P, Q are unique and positive definite. In many applications, such as circuit simulation or time dependent PDE control problems, the dimension, n, of Σ is quite large, in the order of tens of thousands or higher, while the number of inputs m and outputs p usually satisfy m, p ? n. In these largescale settings, it is often desirable to approximate the given system with a much lower dimensional system

[1]  Jacob K. White,et al.  Recent improvements for fast inductance extraction and simulation [packaging] , 1998, IEEE 7th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No.98TH8370).

[2]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[3]  I. Jaimoukha,et al.  Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations , 1997, SIAM J. Matrix Anal. Appl..

[4]  Eugene L. Wachspress,et al.  Alternating direction implicit iteration for systems with complex spectra , 1991 .

[5]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[6]  Kuan-Yue Wang,et al.  A Matrix Equation , 1991, Econometric Theory.

[7]  Yunkai Zhou Numerical methods for large scale matrix equations with applications in LTI system model reduction , 2002 .

[8]  E. Wachspress Optimum Alternating-Direction-Implicit Iteration Parameters for a Model Problem , 1962 .

[9]  Ina Ruck,et al.  USA , 1969, The Lancet.

[10]  E. Jonckheere,et al.  A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds , 1988 .

[11]  D. Enns Model reduction with balanced realizations: An error bound and a frequency weighted generalization , 1984, The 23rd IEEE Conference on Decision and Control.

[12]  G. Starke Feje´r-Walsh points for rational functions and their use in the ADI iterative method , 1993 .

[13]  U. Desai,et al.  A transformation approach to stochastic model reduction , 1984 .

[14]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .

[15]  Serkan Gugercin,et al.  Projection methods for model reduction of large-scale dynamical systems , 2003 .

[16]  Y. Zhou,et al.  On the decay rate of Hankel singular values and related issues , 2002, Syst. Control. Lett..

[17]  Danny C. Sorensen,et al.  Projection Methods for Balanced Model Reduction , 2001 .

[18]  L. J. Hayes,et al.  Iterative Methods for Large Linear Systems , 1989 .

[19]  K. Zhou Frequency-weighted L_∞ nomn and optimal Hankel norm model reduction , 1995 .

[20]  Lothar Reichel,et al.  Application of ADI Iterative Methods to the Restoration of Noisy Images , 1996, SIAM J. Matrix Anal. Appl..

[21]  K. Poolla,et al.  NUMERICAL SOLUTION OF THE LYAPUNOV EQUATION BY APPROXIMATE POWER ITERATION , 1996 .

[22]  Brian D. O. Anderson,et al.  Accuracy enhancing methods for the frequency-weighted balancing related model reduction , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[23]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[24]  Serkan Gugercin,et al.  Approximation of the International Space Station 1R and 12A models , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[25]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[26]  E. Wachspress Iterative solution of the Lyapunov matrix equation , 1988 .

[27]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[28]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[29]  J. P. Thiran,et al.  On the third and fourth Zolotarev problems in the complex plane , 1995 .

[30]  M. Green,et al.  A relative error bound for balanced stochastic truncation , 1988 .

[31]  Kemin Zhou,et al.  Frequency-weighted 𝓛∞ norm and optimal Hankel norm model reduction , 1995, IEEE Trans. Autom. Control..

[32]  Eugene L. Wachspress,et al.  Solution of lyapunov equations by alternating direction implicit iteration , 1991 .

[33]  Jacob K. White,et al.  Efficient model reduction of interconnect via approximate system gramians , 1999, 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051).

[34]  Enrique S. Quintana-Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.

[35]  V. Sreeram,et al.  A new frequency-weighted balanced truncation method and an error bound , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[36]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[37]  Ching-An Lin,et al.  Model Reduction via Frequency Weighted Balanced Realization , 1990, 1990 American Control Conference.

[38]  Jacob K. White,et al.  Reduction of Large Circuit Models Via Low Rank Approximate Gramians , 2001 .

[39]  Enrique S. Quintana-Ortí,et al.  Efficient numerical algorithms for balanced stochastic truncation , 2001 .

[40]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[41]  Jer-Nan Juang,et al.  Model reduction in limited time and frequency intervals , 1990 .

[42]  Gene H. Golub,et al.  Matrix computations , 1983 .

[43]  Y. Saad,et al.  Numerical solution of large Lyapunov equations , 1989 .

[44]  Eugene L. Wachspress The ADI minimax problem for complex spectra , 1990 .

[45]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[46]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[47]  Jacob K. White,et al.  A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits , 1996, ICCAD 1996.

[48]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[49]  Reinhold Schneider,et al.  Numerische Simulation auf massiv parallelen Rechnern , 2003 .

[50]  B. Anderson,et al.  Frequency weighted balanced reduction technique: a generalization and an error bound , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[51]  Gerhard Starke,et al.  Optimal alternating direction implicit parameters for nonsymmetric systems of linear equations , 1991 .

[52]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[53]  Michael Green,et al.  Balanced stochastic realizations , 1988 .

[54]  L. Reichel,et al.  Krylov-subspace methods for the Sylvester equation , 1992 .

[55]  Danny C. Sorensen,et al.  The Sylvester equation and approximate balanced reduction , 2002 .

[56]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[57]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[58]  Danny C. Sorensen,et al.  A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations , 2004, Numerical Algorithms.

[59]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .