Dopaminergic Control of Long-Term Depression/Long-Term Potentiation Threshold in Prefrontal Cortex

Long-term memory in the prefrontal cortex is a necessary component of adaptive executive control and is strongly modulated by dopamine. However, the functional significance of this dopaminergic modulation remains elusive. In vitro experimental results on dopamine-dependent shaping of prefrontal long-term plasticity often appear inconsistent and, altogether, draw a complicated picture. It is also generally difficult to relate these findings to in vivo observations given strong differences between the two experimental conditions. This study presents a unified view of the functional role of dopamine in the prefrontal cortex by framing it within the Bienenstock–Cooper–Munro theory of cortical plasticity. We investigate dopaminergic modulation of long-term plasticity through a multicompartment Hodgkin–Huxley model of a prefrontal pyramidal neuron. Long-term synaptic plasticity in the model is governed by a calcium- and dopamine-dependent learning rule, in which dopamine exerts its action via D1 and D2 dopamine receptors in a concentration-dependent manner. Our results support a novel function of dopamine in the prefrontal cortex, namely that it controls the synaptic modification threshold between long-term depression and potentiation in pyramidal neurons. The proposed theoretical framework explains a wide range of experimental results and provides a link between in vitro and in vivo studies of dopaminergic plasticity modulation. It also suggests that dopamine may constitute a new player in metaplastic and homeostatic processes in the prefrontal cortex.

[1]  Ping Zhong,et al.  Regulation of NMDA Receptors by Dopamine D4 Signaling in Prefrontal Cortex , 2003, The Journal of Neuroscience.

[2]  W. Yao,et al.  D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex , 2010, Proceedings of the National Academy of Sciences.

[3]  J. Fuster Prefrontal Cortex , 2018 .

[4]  Jonathan D. Cohen,et al.  Computational perspectives on dopamine function in prefrontal cortex , 2002, Current Opinion in Neurobiology.

[5]  W. Senn,et al.  Dopamine increases the gain of the input–output response of rat prefrontal pyramidal neurons. J. Neurophysiol. (in press). doi: 10.1152/jn.01098.2007 [epub ahead of print , 2008 .

[6]  Charan Ranganath,et al.  Prefrontal Cortex and Long-Term Memory Encoding: An Integrative Review of Findings from Neuropsychology and Neuroimaging , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[7]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[8]  E. Rolls,et al.  Computational models of schizophrenia and dopamine modulation in the prefrontal cortex , 2008, Nature Reviews Neuroscience.

[9]  J. Feldon,et al.  Mesolimbic dopaminergic pathways in fear conditioning , 2004, Progress in Neurobiology.

[10]  V Bassareo,et al.  Differential Influence of Associative and Nonassociative Learning Mechanisms on the Responsiveness of Prefrontal and Accumbal Dopamine Transmission to Food Stimuli in Rats Fed Ad Libitum , 1997, The Journal of Neuroscience.

[11]  P. Gaspar,et al.  D1 and D2 Receptor Gene Expression in the Rat Frontal Cortex: Cellular Localization in Different Classes of Efferent Neurons , 1995, The European journal of neuroscience.

[12]  P. Garris,et al.  Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  G. Mengod,et al.  Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. , 2009, Cerebral cortex.

[14]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  F. Benes,et al.  Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex , 1995, Synapse.

[16]  J. Desce,et al.  Dopamine Receptors and Groups I and II mGluRs Cooperate for Long-Term Depression Induction in Rat Prefrontal Cortex through Converging Postsynaptic Activation of MAP Kinases , 1999, The Journal of Neuroscience.

[17]  M. Caron,et al.  Regulation of responsiveness at D2 dopamine receptors by receptor desensitization and adenylyl cyclase sensitization. , 1991, Molecular pharmacology.

[18]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[19]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[20]  Y. Matsuda,et al.  The Presence of Background Dopamine Signal Converts Long-Term Synaptic Depression to Potentiation in Rat Prefrontal Cortex , 2006, The Journal of Neuroscience.

[21]  C. Koch,et al.  Multiple channels and calcium dynamics , 1989 .

[22]  S. Floresco,et al.  Magnitude of Dopamine Release in Medial Prefrontal Cortex Predicts Accuracy of Memory on a Delayed Response Task , 2004, The Journal of Neuroscience.

[23]  W. Abraham,et al.  Metaplasticity: A new vista across the field of synaptic plasticity , 1997, Progress in Neurobiology.

[24]  J. Seamans,et al.  Developing a Neuronal Model for the Pathophysiology of Schizophrenia Based on the Nature of Electrophysiological Actions of Dopamine in the Prefrontal Cortex , 1999, Neuropsychopharmacology.

[25]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[26]  A. Grace Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia , 1991, Neuroscience.

[27]  R. Roth,et al.  The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat , 1999, Neuroscience.

[28]  S. Otani,et al.  Inhibition of dopamine transporter activity impairs synaptic depression in rat prefrontal cortex through over-stimulation of D1 receptors. , 2014, Cerebral cortex.

[29]  S. Floresco,et al.  Mesocortical dopamine modulation of executive functions: beyond working memory , 2006, Psychopharmacology.

[30]  Y. Goto,et al.  Prefrontal Cortical Synaptic Plasticity: The Roles of Dopamine and Implication for Schizophrenia , 2007 .

[31]  S. Sajikumar,et al.  Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD , 2004, Neurobiology of Learning and Memory.

[32]  P Vanhoutte,et al.  Background dopamine concentration dependently facilitates long-term potentiation in rat prefrontal cortex through postsynaptic activation of extracellular signal-regulated kinases. , 2009, Cerebral cortex.

[33]  D. Law-Tho,et al.  Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study , 1994, Neuroscience Research.

[34]  A. Arnsten,et al.  Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. , 2011, Behavioral neuroscience.

[35]  Wenjun Gao,et al.  Activation of Glycogen Synthase Kinase-3β Is Required for Hyperdopamine and D2 Receptor-Mediated Inhibition of Synaptic NMDA Receptor Function in the Rat Prefrontal Cortex , 2009, The Journal of Neuroscience.

[36]  C. Stevens,et al.  Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Wang,et al.  Graded bidirectional synaptic plasticity is composed of switch-like unitary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[39]  T. Jay,et al.  Rapid increase in PKA activity during long‐term potentiation in the hippocampal afferent fibre system to the prefrontal cortex in vivo , 1998, The European journal of neuroscience.

[40]  Jonathan D. Cohen,et al.  Prefrontal cortex and flexible cognitive control: rules without symbols. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  John N. J. Reynolds,et al.  Dopamine-dependent plasticity of corticostriatal synapses , 2002, Neural Networks.

[42]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[43]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[44]  G. Quirk,et al.  Infralimbic D2 Receptors Are Necessary for Fear Extinction and Extinction-Related Tone Responses , 2010, Biological Psychiatry.

[45]  Y. Khan,et al.  Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  C. Herry,et al.  Prefrontal Cortex Long-Term Potentiation, But Not Long-Term Depression, Is Associated with the Maintenance of Extinction of Learned Fear in Mice , 2002, The Journal of Neuroscience.

[47]  B. Sabatini,et al.  Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum , 2012, Neuron.

[48]  J. Desce,et al.  Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex , 1998, Neuroscience.

[49]  S. Otani Memory trace in prefrontal cortex: theory for the cognitive switch , 2002, Biological reviews of the Cambridge Philosophical Society.

[50]  R. Roth,et al.  The predator odor, TMT, displays a unique, stress-like pattern of dopaminergic and endocrinological activation in the rat , 2000, Brain Research.

[51]  J. Fuster Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. , 1973, Journal of neurophysiology.

[52]  B. Hoebel,et al.  Feeding can enhance dopamine turnover in the prefrontal cortex , 1990, Brain Research Bulletin.

[53]  F. Crépel,et al.  Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons. , 2003, Cerebral cortex.

[54]  L. Cooper,et al.  Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Huganir,et al.  MAPK cascade signalling and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[56]  S. R. Nash,et al.  Dopamine receptors: from structure to function. , 1998, Physiological reviews.

[57]  Terrence J. Sejnowski,et al.  An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding , 1994, Neural Computation.

[58]  B. Bunney,et al.  Opposite modulation of cortical N-methyl-d-aspartate receptor-mediated responses by low and high concentrations of dopamine , 1999, Neuroscience.

[59]  Yi Zuo,et al.  Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization , 2008, The Journal of Neuroscience.

[60]  Satoru Otani,et al.  Functional and Dysfunctional Synaptic Plasticity in Prefrontal Cortex: Roles in Psychiatric Disorders , 2010, Biological Psychiatry.

[61]  M. Wolf,et al.  Dopamine Receptor Stimulation Modulates AMPA Receptor Synaptic Insertion in Prefrontal Cortex Neurons , 2005, The Journal of Neuroscience.

[62]  Nathan Intrator,et al.  Theory of Cortical Plasticity , 2004 .

[63]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[64]  Junichiro Yoshimoto,et al.  A Kinetic Model of Dopamine- and Calcium-Dependent Striatal Synaptic Plasticity , 2010, PLoS Comput. Biol..

[65]  B. O'dowd,et al.  Dopamine D1 and D2 Receptor Co-activation Generates a Novel Phospholipase C-mediated Calcium Signal* , 2004, Journal of Biological Chemistry.

[66]  P. Goldman-Rakic,et al.  Subcellular localization of the dopamine D2 receptor and coexistence with the calcium‐binding protein neuronal calcium sensor‐1 in the primate prefrontal cortex , 2005, The Journal of comparative neurology.

[67]  A. Grace,et al.  Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission , 2003, Nature Neuroscience.

[68]  Mark F. Bear,et al.  Heterosynaptic metaplasticity in the hippocampus in vivo: A BCM-like modifiable threshold for LTP , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Karl Deisseroth,et al.  Synaptic Activity Unmasks Dopamine D2 Receptor Modulation of a Specific Class of Layer V Pyramidal Neurons in Prefrontal Cortex , 2012, The Journal of Neuroscience.

[70]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[71]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[72]  S. Otani,et al.  The role of tonic and phasic dopamine for long-term synaptic plasticity in the prefrontal cortex: A computational model , 2011, Journal of Physiology-Paris.

[73]  O. Monchi,et al.  Spiking neurons, dopamine, and plasticity: Timing is everything, but concentration also matters , 2007, Synapse.

[74]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[75]  J. Chapin,et al.  Behavioral associations of neuronal activity in the ventral tegmental area of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  Jean-Pascal Pfister,et al.  Optimality Model of Unsupervised Spike-Timing-Dependent Plasticity: Synaptic Memory and Weight Distribution , 2007, Neural Computation.

[77]  T. Sotnikova,et al.  Hyperdopaminergic Tone Erodes Prefrontal Long-Term Potential via a D2 Receptor-Operated Protein Phosphatase Gate , 2009, The Journal of Neuroscience.

[78]  W. Schultz,et al.  Neuronal activity in monkey striatum related to the expectation of predictable environmental events. , 1992, Journal of neurophysiology.

[79]  Gustavo Deco,et al.  A Dynamical Systems Hypothesis of Schizophrenia , 2007, PLoS Comput. Biol..

[80]  S. Floresco,et al.  Multiple Dopamine Receptor Subtypes in the Medial Prefrontal Cortex of the Rat Regulate Set-Shifting , 2006, Neuropsychopharmacology.

[81]  S. Floresco,et al.  Dissociable Contributions by Prefrontal D1 and D2 Receptors to Risk-Based Decision Making , 2011, The Journal of Neuroscience.

[82]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[83]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[84]  L. Cooper,et al.  A biophysical model of bidirectional synaptic plasticity: Dependence on AMPA and NMDA receptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[85]  C. Schmauss,et al.  Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task , 2008, Neuroscience.

[86]  Antonieta Lavin,et al.  Mechanisms Underlying Differential D1 versus D2 Dopamine Receptor Regulation of Inhibition in Prefrontal Cortex , 2004, The Journal of Neuroscience.

[87]  Wulfram Gerstner,et al.  Tag-Trigger-Consolidation: A Model of Early and Late Long-Term-Potentiation and Depression , 2008, PLoS Comput. Biol..

[88]  R. Gainetdinov,et al.  The Physiology, Signaling, and Pharmacology of Dopamine Receptors , 2011, Pharmacological Reviews.

[89]  J. Kerr,et al.  Dopamine Receptor Activation Is Required for Corticostriatal Spike-Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[90]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[91]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[92]  D. Law-Tho,et al.  Dopamine favours the emergence of long-term depression versus long-term potentiation in slices of rat prefrontal cortex , 1995, Neuroscience Letters.

[93]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Seamans,et al.  Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. , 2007, Journal of neurophysiology.

[95]  G. Stuart,et al.  Action Potential Initiation and Propagation in Layer 5 Pyramidal Neurons of the Rat Prefrontal Cortex: Absence of Dopamine Modulation , 2003, The Journal of Neuroscience.

[96]  E. Kandel,et al.  Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. D. McGaugh,et al.  D2 dopamine receptor blockade immediately post-training enhances retention in hidden and visible platform versions of the water maze. , 2000, Learning & memory.

[98]  M. Memo,et al.  Agonist-induced subsensitivity of adenylate cyclase coupled with a dopamine receptor in slices from rat corpus striatum. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Jeanette Kotaleski,et al.  Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation , 2006, PLoS Comput. Biol..

[100]  J. Seamans,et al.  D1 Receptor Modulation of Hippocampal–Prefrontal Cortical Circuits Integrating Spatial Memory with Executive Functions in the Rat , 1998, The Journal of Neuroscience.

[101]  Christopher C Lapish,et al.  Mesocortical Dopamine Neurons Operate in Distinct Temporal Domains Using Multimodal Signaling , 2005, The Journal of Neuroscience.

[102]  Serge Laroche,et al.  Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region , 1990, Neuroscience Letters.

[103]  J. Galle,et al.  D1 receptor antagonist-induced long-term depression in the medial prefrontal cortex of rat, in vivo: an animal model of psychiatric hypofrontality , 2009, Journal of psychopharmacology.

[104]  T. Jay Dopamine: a potential substrate for synaptic plasticity and memory mechanisms , 2003, Progress in Neurobiology.

[105]  T. Jay,et al.  Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal–prefrontal cortex long-term potentiation , 1999, Neuroscience.

[106]  F. Crépel,et al.  Use‐dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. , 1990, The Journal of physiology.

[107]  Michael L. Hines,et al.  Neuroinformatics Original Research Article Neuron and Python , 2022 .

[108]  M. Zigmond,et al.  Stress‐Induced Sensitization of Dopamine and Norepinephrine Efflux in Medial Prefrontal Cortex of the Rat , 1994, Journal of neurochemistry.

[109]  J. Beaulieu,et al.  Confocal Analysis of Cholinergic and Dopaminergic Inputs onto Pyramidal Cells in the Prefrontal Cortex of Rodents , 2010, Front. Neuroanat..

[110]  Min Whan Jung,et al.  Plasticity and Memory in the Prefrontal Cortex , 2008, Reviews in the neurosciences.

[111]  J. Lisman A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Kuei Y Tseng,et al.  Dopamine–Glutamate Interactions Controlling Prefrontal Cortical Pyramidal Cell Excitability Involve Multiple Signaling Mechanisms , 2004, The Journal of Neuroscience.