Entanglement-assisted quantum feedback control

The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[3]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[4]  V. Kučera A contribution to matrix quadratic equations , 1972 .

[5]  H. Kwakernaak,et al.  The maximally achievable accuracy of linear optimal regulators and linear optimal filters , 1972 .

[6]  A. Bensoussan Stochastic Control of Partially Observable Systems , 1992 .

[7]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[8]  Sergey P. Vyatchanin,et al.  Quantum variation measurement of a force , 1995 .

[9]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[10]  Timothy C. Ralph,et al.  A Guide to Experiments in Quantum Optics , 1998 .

[11]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[12]  David Q. Mayne,et al.  Feedback limitations in nonlinear systems: from Bode integrals to cheap control , 1999, IEEE Trans. Autom. Control..

[13]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[14]  A. C. Doherty,et al.  STATE DETERMINATION IN CONTINUOUS MEASUREMENT , 1999 .

[15]  V. P. Belavkin,et al.  Measurement, filtering and control in quantum open dynamical systems , 1999 .

[16]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[17]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[18]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[20]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[21]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[22]  Ramon van Handel,et al.  On the separation principle of quantum control , 2005 .

[23]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[24]  H J Mamin,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[25]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[26]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[27]  Michael Seadle Measurement , 2007, The Measurement of Information Integrity.

[28]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[29]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[30]  P. Tombesi,et al.  Robust entanglement of a micromechanical resonator with output optical fields , 2008, 0806.2045.

[31]  Viacheslav P. Belavkin,et al.  Quantum Filtering and Optimal Control , 2008 .

[32]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[33]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[34]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[35]  P. Windpassinger,et al.  Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit , 2008, Proceedings of the National Academy of Sciences.

[36]  Jelmer J. Renema,et al.  Entanglement-assisted atomic clock beyond the projection noise limit , 2009, 0912.3895.

[37]  Akira Furusawa,et al.  Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing , 2011 .

[38]  G. Milburn,et al.  An introduction to quantum optomechanics , 2011 .

[39]  Ryan Hamerly,et al.  Advantages of coherent feedback for cooling quantum oscillators. , 2012, Physical review letters.

[40]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[41]  Ryan Hamerly,et al.  Coherent controllers for optical-feedback cooling of quantum oscillators , 2012, 1206.2688.

[42]  Hidehiro Yonezawa,et al.  Quantum-limited mirror-motion estimation. , 2013, Physical review letters.

[43]  Naoki Yamamoto,et al.  Coherent versus measurement feedback: Linear systems theory for quantum information , 2014, 1406.6466.

[44]  Tobias J. Kippenberg,et al.  Measurement and control of a mechanical oscillator at its thermal decoherence rate 1 DALZIEL WILSON, VIVISHEK SUDHIR, NICOLAS PIRO, , 2014 .

[45]  Marco G. Genoni,et al.  Quantum filtering of a thermal master equation with a purified reservoir , 2014 .

[46]  Stuart S Szigeti,et al.  Ignorance is bliss: general and robust cancellation of decoherence via no-knowledge quantum feedback. , 2014, Physical review letters.

[47]  K. Jacobs Quantum Measurement Theory and its Applications , 2014 .

[48]  A. Clerk,et al.  Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light. , 2015, Physical review letters.

[49]  V. Sudhir,et al.  Measurement-based control of a mechanical oscillator at its thermal decoherence rate , 2014, Nature.

[50]  Naoki Yamamoto,et al.  Quantum feedback amplification , 2015, 1508.03708.

[51]  Markus Aspelmeyer,et al.  Optimal State Estimation for Cavity Optomechanical Systems. , 2015, Physical review letters.

[52]  Klemens Hammerer,et al.  Entanglement-enhanced time-continuous quantum control in optomechanics , 2014, 1411.1337.

[53]  Tobias Gehring,et al.  Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light , 2016, Nature Communications.