Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum

The tonically active neurons (TANs) are a population of neurons scattered sparsely throughout the striatum that show intriguing patterns of firing activity during reinforcement learning. Following repeated pairings of a neutral stimulus with a primary reward, TANs develop a transient cessation of firing activity in response to the stimulus, termed the "conditioned pause response." In tasks where specific cues are arranged to signal the probability of particular outcomes, the pause response to both cue and outcome may differ in ways that suggest the involvement of different inputs to the same neuron. Here we review the cellular properties of cholinergic interneurons and describe the response to their afferents in terms of inducing TAN-like pauses in tonic firing. Recent work has shown that thalamostriatal inputs to cholinergic neurons transiently suppress firing activity via dopamine release. Because these pauses are initiated by subcortical pathways with limited sensory processing abilities, we propose that they are an ideal correlate for the pauses observed in TANs in response to cues signaling trial initiation. On the other hand, pauses that accompany outcome presentation contain higher-level information, including an apparent sensitivity to reward prediction error. Thus, these pauses may be mediated by cortical inputs to cholinergic interneurons. Although there is evidence linking cholinergic pauses to synaptic plasticity, much remains to be discovered about the effect of this relatively sparse but influential population on the striatal learning system.

[1]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  Enrico Bracci,et al.  Cholinergic Interneurons Control the Excitatory Input to the Striatum , 2007, The Journal of Neuroscience.

[3]  Richard M. Eglen,et al.  Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development , 2007, Nature Reviews Drug Discovery.

[4]  J. Bargas,et al.  Muscarinic M1 modulation of N and L types of calcium channels is mediated by protein kinase C in neostriatal neurons , 2008, Neuroscience.

[5]  J. Carey,et al.  Large neurons in the primate neostriatum examined with the combined Golgi‐electron microscopic method , 1986, The Journal of comparative neurology.

[6]  Joshua L Plotkin,et al.  Differential Excitability and Modulation of Striatal Medium Spiny Neuron Dendrites , 2008, The Journal of Neuroscience.

[7]  J. Reynolds,et al.  Visual-Induced Excitation Leads to Firing Pauses in Striatal Cholinergic Interneurons , 2011, The Journal of Neuroscience.

[8]  D. Sulzer,et al.  Frequency-dependent modulation of dopamine release by nicotine , 2004, Nature Neuroscience.

[9]  H. Kita,et al.  GABAergic circuits of the striatum. , 1993, Progress in brain research.

[10]  A. Barbeau The pathogenesis of Parkinson's disease: a new hypothesis. , 1962, Canadian Medical Association journal.

[11]  A. Nieoullon,et al.  Ultrastructural features of the choline acetyltransferase-containing neurons and relationships with nigral dopaminergic and cortical afferent pathways in the rat striatum , 1993, Neuroscience.

[12]  C. Geula,et al.  Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus , 1992, The Journal of comparative neurology.

[13]  M. D. Crutcher,et al.  Single cell studies of the primate putamen , 2004, Experimental Brain Research.

[14]  A. Graybiel,et al.  Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. , 1994, Science.

[15]  J. Bargas,et al.  Muscarinic receptors involved in the subthreshold cholinergic actions of neostriatal spiny neurons , 2002, Synapse.

[16]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[17]  J. Bargas,et al.  Muscarinic presynaptic inhibition of neostriatal glutamatergic afferents is mediated by Q-type Ca2+ channels , 1999, Brain Research Bulletin.

[18]  R. Malenka,et al.  Presynaptic actions of carbachol and adenosine on corticostriatal synaptic transmission studied in vitro , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  B. Hyland,et al.  Firing modes of midbrain dopamine cells in the freely moving rat , 2002, Neuroscience.

[20]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[21]  Yuchun Zhang,et al.  Involvement of Ih in Dopamine Modulation of Tonic Firing in Striatal Cholinergic Interneurons , 2007, The Journal of Neuroscience.

[22]  Charles J. Wilson,et al.  The Mechanism of Intrinsic Amplification of Hyperpolarizations and Spontaneous Bursting in Striatal Cholinergic Interneurons , 2005, Neuron.

[23]  Anatol C. Kreitzer,et al.  Striatal Plasticity and Basal Ganglia Circuit Function , 2008, Neuron.

[24]  A. D. Smith,et al.  Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy , 1984, Neuroscience.

[25]  M. Difiglia Synaptic organization of cholinergic neurons in the monkey neostriatum , 1987, The Journal of comparative neurology.

[26]  P. Calabresi,et al.  Endogenous ACh enhances striatal NMDA‐responses via M1‐like muscarinic receptors and PKC activation , 1998, The European journal of neuroscience.

[27]  Antonio Pisani,et al.  Acetylcholine-mediated modulation of striatal function , 2000, Trends in Neurosciences.

[28]  Charles J. Wilson,et al.  Nonequilibrium Calcium Dynamics Regulate the Autonomous Firing Pattern of Rat Striatal Cholinergic Interneurons , 2009, The Journal of Neuroscience.

[29]  J. Wess Molecular biology of muscarinic acetylcholine receptors. , 1996, Critical reviews in neurobiology.

[30]  D. Surmeier,et al.  Muscarinic receptors modulate N-, P-, and L-type Ca2+ currents in rat striatal neurons through parallel pathways , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[32]  Charles J. Wilson,et al.  Synaptic Regulation of Action Potential Timing in Neostriatal Cholinergic Interneurons , 1998, The Journal of Neuroscience.

[33]  E. Vaadia,et al.  Spike Synchronization in the Cortex-Basal Ganglia Networks of Parkinsonian Primates Reflects Global Dynamics of the Local Field Potentials , 2004, The Journal of Neuroscience.

[34]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[35]  J. Rajkowski,et al.  Tonically discharging putamen neurons exhibit set-dependent responses. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Jacobowitz,et al.  A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Wickens,et al.  The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues , 2004, Brain Research.

[38]  E. Vaadia,et al.  Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials , 2008, The Journal of Neuroscience.

[39]  Charles J. Wilson,et al.  Spontaneous Activity of Neostriatal Cholinergic Interneurons In Vitro , 1999, The Journal of Neuroscience.

[40]  J. Wickens,et al.  Short-Latency Activation of Striatal Spiny Neurons via Subcortical Visual Pathways , 2009, The Journal of Neuroscience.

[41]  A. Graybiel,et al.  Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. , 2001, Journal of neurophysiology.

[42]  M. Anderson Discharge patterns of basal ganglia neurons during active maintenance of postural stability and adjustment to chair tilt , 1978, Brain Research.

[43]  E. Abercrombie,et al.  Spontaneous release of acetylcholine in striatum is preferentially regulated by inhibitory dopamine D2 receptors. , 1996, European journal of pharmacology.

[44]  Henry H. Yin,et al.  Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons , 2006, Neuron.

[45]  M Abeles,et al.  Activity of Pallidal and Striatal Tonically Active Neurons Is Correlated in MPTP-Treated Monkeys But Not in Normal Monkeys , 2001, The Journal of Neuroscience.

[46]  M. Mouroux,et al.  Evidence that the parafascicular projection to the subthalamic nucleus is glutamatergic. , 1993, Neuroreport.

[47]  D. James Surmeier,et al.  G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca Channels Is Dependent on a Shank-Binding Domain , 2005 .

[48]  D. Surmeier,et al.  Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons , 2007, Nature Neuroscience.

[49]  D. Surmeier,et al.  Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. , 2004, Journal of neurophysiology.

[50]  B. Sabatini,et al.  Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration , 2009, Nature Neuroscience.

[51]  T. Powell,et al.  The synaptic organization of the caudate nucleus. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  Sabrina Ravel,et al.  Tonically active neurons in the monkey striatum do not preferentially respond to appetitive stimuli , 1999, Experimental Brain Research.

[53]  K. Hsu,et al.  Carbachol induces inward current in neostriatal neurons through M1-like muscarinic receptors , 1996, Neuroscience.

[54]  J. Bolam,et al.  Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat , 1992, Neuroscience.

[55]  D. Surmeier,et al.  Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane- delimited, G-protein pathway , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  S. Cragg,et al.  Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission , 2008, British journal of pharmacology.

[57]  C. Wilson,et al.  Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. , 1989, Journal of neurophysiology.

[58]  Y. Smith,et al.  The thalamostriatal system: a highly specific network of the basal ganglia circuitry , 2004, Trends in Neurosciences.

[59]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Roy M. Smeal,et al.  A rat brain slice preparation for characterizing both thalamostriatal and corticostriatal afferents , 2007, Journal of Neuroscience Methods.

[61]  Peter Redgrave,et al.  Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat , 2007, The Journal of comparative neurology.

[62]  N. Kowalenko,et al.  Drug‐induced extrapyramidal reactions , 2002, Journal of paediatrics and child health.

[63]  John A. Dani,et al.  Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum , 2001, Nature Neuroscience.

[64]  L. Descarries,et al.  Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum , 1996, Neuroscience.

[65]  Charles J. Wilson,et al.  RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion , 2006, Nature Neuroscience.

[66]  Ilana B. Witten,et al.  Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning , 2010, Science.

[67]  M. Kimura,et al.  Dopamine receptor-mediated mechanisms involved in the expression of learned activity of primate striatal neurons. , 1998, Journal of neurophysiology.

[68]  S. Cragg,et al.  Nicotine amplifies reward-related dopamine signals in striatum , 2004, Nature Neuroscience.

[69]  Masahiko Watanabe,et al.  Tonic Enhancement of Endocannabinoid-Mediated Retrograde Suppression of Inhibition by Cholinergic Interneuron Activity in the Striatum , 2007, The Journal of Neuroscience.

[70]  A. Parent,et al.  Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey , 1994, The Journal of comparative neurology.

[71]  Charles J. Wilson,et al.  Cholinergic interneuron characteristics and nicotinic properties in the striatum. , 2002, Journal of neurobiology.

[72]  T. Aosaki,et al.  Dopamine-Dependent Synaptic Plasticity in the Striatal Cholinergic Interneurons , 2001, The Journal of Neuroscience.

[73]  S. T. Kitai,et al.  Morphological and physiological properties of neostriatal neurons: An intracellular horseradish peroxidase study in the rat , 1982, Neuroscience.

[74]  J. Lehmann,et al.  The striatal cholinergic interneuron: Synaptic target of dopaminergic terminals? , 1983, Neuroscience.

[75]  Joshua L. Plotkin,et al.  The role of dopamine in modulating the structure and function of striatal circuits. , 2010, Progress in brain research.

[76]  E. Vaadia,et al.  Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. , 1996, Journal of neurophysiology.

[77]  Y. Kawaguchi,et al.  Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents. , 1992, Journal of neurophysiology.

[78]  S. Cragg Meaningful silences: how dopamine listens to the ACh pause , 2006, Trends in Neurosciences.

[79]  H. Groenewegen,et al.  Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum , 1990, The Journal of comparative neurology.

[80]  Jean-Michel Deniau,et al.  Cell‐specific spike‐timing‐dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices , 2008, The Journal of physiology.

[81]  D. James Surmeier,et al.  Corticostriatal and Thalamostriatal Synapses Have Distinctive Properties , 2008, The Journal of Neuroscience.

[82]  J. Wickens,et al.  Timing is not Everything: Neuromodulation Opens the STDP Gate , 2010, Front. Syn. Neurosci..

[83]  Y. Smith,et al.  Cortical inputs to m2‐immunoreactive striatal interneurons in rat and monkey , 2000, Synapse.

[84]  J. Tepper,et al.  Dual Cholinergic Control of Fast-Spiking Interneurons in the Neostriatum , 2002, The Journal of Neuroscience.

[85]  P. Calabresi,et al.  Muscarinic IPSPs in rat striatal cholinergic interneurones , 1998, The Journal of physiology.

[86]  D. James Surmeier,et al.  Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons , 1990, Nature.

[87]  D. Surmeier,et al.  Kv4.2 mRNA Abundance and A-Type K+ Current Amplitude Are Linearly Related in Basal Ganglia and Basal Forebrain Neurons , 2000, The Journal of Neuroscience.

[88]  J. E. Vaughn,et al.  Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: A correlated light and electron microscopic study of cholinergic neurons and synapses , 1985, The Journal of comparative neurology.

[89]  M. Raiteri,et al.  Muscarinic receptors mediate direct inhibition of GABA release from rat striatal nerve terminals , 1990, Neuroscience Letters.

[90]  Charles J. Wilson,et al.  Intrinsic Membrane Properties Underlying Spontaneous Tonic Firing in Neostriatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[91]  H. Dodt,et al.  Muscarinic slow excitation and muscarinic inhibition of synaptic transmission in the rat neostriatum. , 1986, The Journal of physiology.

[92]  J. Bargas,et al.  Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. , 2005, Journal of neurophysiology.

[93]  Charles J. Wilson,et al.  Control of Spontaneous Firing Patterns by the Selective Coupling of Calcium Currents to Calcium-Activated Potassium Currents in Striatal Cholinergic Interneurons , 2005, The Journal of Neuroscience.

[94]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[95]  Charles J. Wilson,et al.  The Cholinergic Interneurons of the Striatum: Intrinsic Properties Underlie Multiple Discharge Patterns , 2010 .

[96]  P. Apicella Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events , 2002, The European journal of neuroscience.

[97]  M. Deschenes,et al.  A Single‐cell Study of the Axonal Projections Arising from the Posterior Intralaminar Thalamic Nuclei in the Rat , 1996, The European journal of neuroscience.

[98]  P. Apicella,et al.  Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context , 2009, The European journal of neuroscience.

[99]  P S Goldman-Rakic,et al.  Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: Anatomical evidence for cholinergic modulation of glutamatergic prefronto‐striatal pathways , 2001, The Journal of comparative neurology.

[100]  J. Bargas,et al.  Cholinergic Modulation of Neostriatal Output: a Functional Antagonism between Different Types of Muscarinic Receptors Materials and Methods , 1999 .

[101]  Weixing Shen,et al.  Cholinergic Suppression of KCNQ Channel Currents Enhances Excitability of Striatal Medium Spiny Neurons , 2005, The Journal of Neuroscience.

[102]  J. Bargas,et al.  Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons , 1999, Neuroscience.

[103]  D. James Surmeier,et al.  Re-emergence of striatal cholinergic interneurons in movement disorders , 2007, Trends in Neurosciences.

[104]  J. Wickens,et al.  Modulation of an Afterhyperpolarization by the Substantia Nigra Induces Pauses in the Tonic Firing of Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[105]  P. Calabresi,et al.  Coordinate high-frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons. , 2004, Learning & memory.

[106]  M. Zigmond,et al.  Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum , 2001, Neuroscience.

[107]  P. Calabresi,et al.  Permissive role of interneurons in corticostriatal synaptic plasticity , 1999, Brain Research Reviews.

[108]  John N. J. Reynolds,et al.  Dopamine-dependent plasticity of corticostriatal synapses , 2002, Neural Networks.

[109]  A. Parent,et al.  The Nigrostriatal Pathway in the Rat: A Single-Axon Study of the Relationship between Dorsal and Ventral Tier Nigral Neurons and the Striosome/Matrix Striatal Compartments , 2001, The Journal of Neuroscience.

[110]  G. Bernardi,et al.  Loss of Muscarinic Autoreceptor Function Impairs Long-Term Depression But Not Long-Term Potentiation in the Striatum , 2008, The Journal of Neuroscience.

[111]  F. Murakami,et al.  Quantitative relationship between Kv4.2 mRNA and A-type K+ current in rat striatal cholinergic interneurons during development. , 2003, Journal of neurophysiology.

[112]  P. Apicella,et al.  The Role of Striatal Tonically Active Neurons in Reward Prediction Error Signaling during Instrumental Task Performance , 2011, The Journal of Neuroscience.

[113]  P. Mcgeer,et al.  Drug-induced extrapyramidal reactions. Treatment with diphenhydramine hydrochloride and dihydroxyphenylalanine. , 1961, JAMA.

[114]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[115]  A. Graybiel,et al.  Temporal and spatial characteristics of tonically active neurons of the primate's striatum. , 1995, Journal of neurophysiology.

[116]  Huanmian Chen,et al.  Recurrent Inhibitory Network among Striatal Cholinergic Interneurons , 2008, The Journal of Neuroscience.

[117]  Kuei Yuan Tseng,et al.  Handbook of basal ganglia structure and function , 2010 .

[118]  P. Redgrave,et al.  What is reinforced by phasic dopamine signals? , 2008, Brain Research Reviews.

[119]  M. Ochi,et al.  Long-term enhancement of dopamine release by high frequency tetanic stimulation via aN-methyl-d-aspartate-receptor-mediated pathway in rat striatum , 1995, Neuroscience.

[120]  Charles J. Wilson,et al.  Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons. , 2006, Journal of neurophysiology.

[121]  H. T. Chang,et al.  Large neostriatal neurons in the rat: An electron microscopic study of gold-toned Golgi-stained cells , 1982, Brain Research Bulletin.

[122]  D. Surmeier,et al.  Somatodendritic Depolarization-Activated Potassium Currents in Rat Neostriatal Cholinergic Interneurons Are Predominantly of the A Type and Attributable to Coexpression of Kv4.2 and Kv4.1 Subunits , 1998, The Journal of Neuroscience.

[123]  Eric Legallet,et al.  Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states , 1997, Experimental Brain Research.

[124]  J. Reynolds,et al.  IH current generates the afterhyperpolarisation following activation of subthreshold cortical synaptic inputs to striatal cholinergic interneurons , 2009, Journal of Physiology.

[125]  D. James Surmeier,et al.  Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons , 2010, Neuron.

[126]  A Akaike,et al.  Muscarinic inhibition as a dominant role in cholinergic regulation of transmission in the caudate nucleus. , 1988, The Journal of pharmacology and experimental therapeutics.

[127]  Y. Smith,et al.  Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins , 1999, Neuroscience.

[128]  Nicolas Maurice,et al.  D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[129]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.