Case Studies: Function Predictions of Structural Genomics Results

[1]  Christian M. Zmasek,et al.  TOPSAN: a dynamic web database for structural genomics , 2010, Nucleic Acids Res..

[2]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[3]  Dan M. Bolser,et al.  PDBWiki: added value through community annotation of the Protein Data Bank , 2010, Database J. Biol. Databases Curation.

[4]  B. Cravatt,et al.  Activity-based Proteomics of Enzyme Superfamilies: Serine Hydrolases as a Case Study* , 2010, The Journal of Biological Chemistry.

[5]  A. Joachimiak,et al.  Structures of open (R) and close (T) states of prephenate dehydratase (PDT)--implication of allosteric regulation by L-phenylalanine. , 2008, Journal of structural biology.

[6]  Ashley Deacon,et al.  Structural genomics: from genes to structures with valuable materials and many questions in between , 2008, Nature Methods.

[7]  T. Gabaldón Comparative genomics-based prediction of protein function. , 2008, Methods in molecular biology.

[8]  Cheryl H Arrowsmith,et al.  High throughput screening of purified proteins for enzymatic activity. , 2008, Methods in molecular biology.

[9]  M. Ashburner,et al.  Calling on a million minds for community annotation in WikiProteins , 2008, Genome Biology.

[10]  Russ B Altman,et al.  The SeqFEATURE library of 3D functional site models: comparison to existing methods and applications to protein function annotation , 2008, Genome Biology.

[11]  Lydia E. Kavraki,et al.  Prediction of enzyme function based on 3D templates of evolutionarily important amino acids , 2008, BMC Bioinformatics.

[12]  Jeremy M Berg,et al.  Update on the protein structure initiative. , 2007, Structure.

[13]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[14]  Johannes C. Hermann,et al.  Structure-based activity prediction for an enzyme of unknown function , 2007, Nature.

[15]  Zongchao Jia,et al.  Piecing together the structure–function puzzle: Experiences in structure‐based functional annotation of hypothetical proteins , 2007, Proteomics.

[16]  Janet M Thornton,et al.  Towards fully automated structure-based function prediction in structural genomics: a case study. , 2007, Journal of molecular biology.

[17]  Benjamin J. Raphael,et al.  The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families , 2007, PLoS biology.

[18]  Jim Giles,et al.  Key biology databases go wiki , 2007, Nature.

[19]  Ying Wei,et al.  Selective prediction of interaction sites in protein structures with THEMATICS , 2007, BMC Bioinformatics.

[20]  Daniel J Rigden,et al.  Understanding the cell in terms of structure and function: insights from structural genomics. , 2006, Current opinion in biotechnology.

[21]  Z. Jia,et al.  Modulator of drug activity B from Escherichia coli: crystal structure of a prokaryotic homologue of DT-diaphorase. , 2006, Journal of molecular biology.

[22]  J. Thornton,et al.  A method for localizing ligand binding pockets in protein structures , 2005, Proteins.

[23]  Janet M Thornton,et al.  Protein function prediction using local 3D templates. , 2005, Journal of molecular biology.

[24]  Janet M. Thornton,et al.  ProFunc: a server for predicting protein function from 3D structure , 2005, Nucleic Acids Res..

[25]  S. Kozmin,et al.  Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast , 2005, BMC Genetics.

[26]  T. Hughes,et al.  The Shwachman-Bodian-Diamond Syndrome Protein Family Is Involved in RNA Metabolism* , 2005, Journal of Biological Chemistry.

[27]  Cheryl H Arrowsmith,et al.  Enzyme genomics: Application of general enzymatic screens to discover new enzymes. , 2005, FEMS microbiology reviews.

[28]  Eric P. Skaar,et al.  Staphylococcus aureus IsdG and IsdI, Heme-degrading Enzymes with Structural Similarity to Monooxygenases* , 2005, Journal of Biological Chemistry.

[29]  L. Aravind,et al.  The many faces of the helix-turn-helix domain : Transcription regulation and beyond q , 2005 .

[30]  D. Eisenberg,et al.  Inference of protein function from protein structure. , 2005, Structure.

[31]  M. Thórólfsson,et al.  Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism , 2005, Amino Acids.

[32]  Hirotada Mori,et al.  General Enzymatic Screens Identify Three New Nucleotidases in Escherichia coli , 2004, Journal of Biological Chemistry.

[33]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[34]  Jie Liang,et al.  pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins , 2004, Nucleic Acids Res..

[35]  W. Hsu,et al.  Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum , 2004, Archives of Microbiology.

[36]  Janet M. Thornton,et al.  The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data , 2004, Nucleic Acids Res..

[37]  Sung-Hou Kim,et al.  Structure-based experimental confirmation of biochemical function to a methyltransferase, MJ0882, from hyperthermophile Methanococcus jannaschii , 2004, Journal of Structural and Functional Genomics.

[38]  Dong Hae Shin,et al.  Structure-based functional inference in structural genomics , 2004, Journal of Structural and Functional Genomics.

[39]  M. Huynen,et al.  Prediction of protein function and pathways in the genome era , 2004, Cellular and Molecular Life Sciences CMLS.

[40]  J. Skolnick,et al.  How well is enzyme function conserved as a function of pairwise sequence identity? , 2003, Journal of molecular biology.

[41]  J. Whisstock,et al.  Prediction of protein function from protein sequence and structure , 2003, Quarterly Reviews of Biophysics.

[42]  J. Thornton,et al.  Integrating Structure, Bioinformatics, and Enzymology to Discover Function , 2003, Journal of Biological Chemistry.

[43]  Robert B. Russell,et al.  Annotation in three dimensions. PINTS: Patterns in Non-homologous Tertiary Structures , 2003, Nucleic Acids Res..

[44]  A. Miele,et al.  The structure of ActVA‐Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis , 2003, The EMBO journal.

[45]  Robert B. Russell,et al.  Annotation in three dimensions , 2003 .

[46]  Johanna M. Rommens,et al.  Mutations in SBDS are associated with Shwachman–Diamond syndrome , 2003, Nature Genetics.

[47]  Olivier Poch,et al.  Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. , 2002, Nucleic acids research.

[48]  B. Rost Enzyme function less conserved than anticipated. , 2002, Journal of molecular biology.

[49]  P. Babbitt,et al.  Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. , 2001, Annual review of biochemistry.

[50]  C. Chothia,et al.  Determination of protein function, evolution and interactions by structural genomics. , 2001, Current opinion in structural biology.

[51]  Annabel E. Todd,et al.  Evolution of function in protein superfamilies, from a structural perspective. , 2001, Journal of molecular biology.

[52]  A. Vagin,et al.  thioredoxin peroxidase B from red blood cells , 2000 .

[53]  A. Vagin,et al.  Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. , 2000, Structure.

[54]  B. Ganem,et al.  Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain. , 2000, Biochemistry.

[55]  Yunje Cho,et al.  Structure-based identification of a novel NTPase from Methanococcus jannaschii , 1999, Nature Structural Biology.

[56]  A. Rich,et al.  Structure–function analysis of the Z‐DNA‐binding domain Zα of dsRNA adenosine deaminase type I reveals similarity to the (α + β) family of helix–turn–helix proteins , 1999, The EMBO journal.

[57]  Sung-Hou Kim,et al.  Crystal structure of a small heat-shock protein , 1998, Nature.

[58]  P. E. Granum,et al.  Bacillus cereus and its food poisoning toxins. , 1997, FEMS microbiology letters.

[59]  V. Noskov,et al.  HAM1, the gene controlling 6‐N‐hydroxylaminopurine sensitivity and mutagenesis in the yeast Saccharomyces cerevisiae , 1996, Yeast.

[60]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[61]  R. Laskowski SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. , 1995, Journal of molecular graphics.

[62]  A. Lesk,et al.  The relation between the divergence of sequence and structure in proteins. , 1986, The EMBO journal.