Using Abelian Varieties to Improve Pairing-Based Cryptography

We show that supersingular Abelian varieties can be used to obtain higher MOV security per bit, in all characteristics, than supersingular elliptic curves. We give a point compression/decompression algorithm for primitive subgroups associated with elliptic curves that gives shorter signatures, ciphertexts, or keys for the same security while using the arithmetic on supersingular elliptic curves. We determine precisely which embedding degrees are possible for simple supersingular Abelian varieties over finite fields and define some invariants that are better measures of cryptographic security than the embedding degree. We construct examples of good supersingular Abelian varieties to use in pairing-based cryptography.

[1]  Paula Cohen ABELIAN VARIETIES WITH COMPLEX MULTIPLICATION AND MODULAR FUNCTIONS (Princeton Mathematical Series 46) By G ORO S HIMURA : 217 pp. US$55.00 (£39.50), ISBN 0 691 01656 9 (Princeton University Press, 1997). , 1999 .

[2]  Brent Waters,et al.  Conjunctive, Subset, and Range Queries on Encrypted Data , 2007, TCC.

[3]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[4]  Antoine Joux,et al.  The Function Field Sieve in the Medium Prime Case , 2006, EUROCRYPT.

[5]  Claus Diem,et al.  A G ] 7 A ug 2 00 5 On the Structure of Weil Restrictions of Abelian Varieties , 2008 .

[6]  Alice Silverberg,et al.  Supersingular Abelian Varieties in Cryptology , 2002, CRYPTO.

[7]  Arjen K. Lenstra,et al.  The XTR Public Key System , 2000, CRYPTO.

[8]  Solomon W. Golomb CYCLOTOMIC POLYNOMIALS AND FACTORIZATION THEOREMS , 1978 .

[9]  Nigel P. Smart,et al.  Constructive and destructive facets of Weil descent on elliptic curves , 2002, Journal of Cryptology.

[10]  P. Gaudry,et al.  A general framework for subexponential discrete logarithm algorithms , 2002 .

[11]  Y. Aubry,et al.  Arithmetic, Geometry and Coding Theory , 2005 .

[12]  Colin Boyd,et al.  Advances in Cryptology - ASIACRYPT 2001 , 2001 .

[13]  Mihir Bellare Advances in Cryptology — CRYPTO 2000 , 2000, Lecture Notes in Computer Science.

[14]  Serge Lang,et al.  Abelian varieties , 1983 .

[15]  Tsuyoshi Takagi,et al.  Pairing-Based Cryptography - Pairing 2007, First International Conference, Tokyo, Japan, July 2-4, 2007, Proceedings , 2007, Pairing.

[16]  Robert Coleman,et al.  Stable reduction of Fermat curves and Jacobi sum Hecke characters. , 1988 .

[17]  R. Balasubramanian,et al.  The Improbability That an Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes—Okamoto—Vanstone Algorithm , 1998, Journal of Cryptology.

[18]  Aggelos Kiayias,et al.  Self Protecting Pirates and Black-Box Traitor Tracing , 2001, CRYPTO.

[19]  Alice Silverberg,et al.  Torus-Based Cryptography , 2003, CRYPTO.

[20]  Peter J. Smith,et al.  LUC: A New Public Key System , 1993, SEC.

[21]  G. Frey Applications of Arithmetical Geometry to Cryptographic Constructions , 2001 .

[22]  K. Sakurai,et al.  Efficient algorithms for the Jacobian variety of hyperelliptic curves $y^2=x^p-x+1$ over a finite field of odd characteristic $p$ , 2000 .

[23]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[24]  Tanja Lange,et al.  Trace zero subvarieties of genus 2 curves for cryptosystems , 2004 .

[25]  Johannes Buchmann,et al.  Coding Theory, Cryptography and Related Areas , 2000, Springer Berlin Heidelberg.

[26]  Andre Weimerskirch,et al.  The Application of the Mordell-Weil Group to Cryptographic Systems , 2001 .

[27]  B. Mazur,et al.  Twisting Commutative Algebraic Groups , 2006, math/0609066.

[28]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.

[29]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[30]  Serge Vaudenay,et al.  Advances in Cryptology - EUROCRYPT 2006 , 2006, Lecture Notes in Computer Science.

[31]  Taira Honda,et al.  Isogeny classes of abelian varieties over finite fields , 1968 .

[32]  Dan Boneh,et al.  Advances in Cryptology - CRYPTO 2003 , 2003, Lecture Notes in Computer Science.

[33]  志村 五郎,et al.  Introduction to the arithmetic theory of automorphic functions , 1971 .

[34]  Mark Stamp,et al.  Public Key Systems , 2007 .

[35]  Chris J. Skinner,et al.  A Public-Key Cryptosystem and a Digital Signature System BAsed on the Lucas Function Analogue to Discrete Logarithms , 1994, ASIACRYPT.

[36]  Antoine Joux,et al.  A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.

[37]  Dan Boneh,et al.  Evaluating 2-DNF Formulas on Ciphertexts , 2005, TCC.

[38]  D. Mumford Abelian Varieties Tata Institute of Fundamental Research , 1970 .

[39]  Edward F. Schaefer A new proof for the non-degeneracy of the Frey-Rück pairing and a connection to isogenies over the base field , 2005 .

[40]  Pierrick Gaudry,et al.  Index calculus for abelian varieties and the elliptic curve discrete logarithm problem , 2004, IACR Cryptol. ePrint Arch..

[41]  G. Frey,et al.  A remark concerning m -divisibility and the discrete logarithm in the divisor class group of curves , 1994 .

[42]  A. Silverberg,et al.  COMPRESSION FOR TRACE ZERO SUBGROUPS OF ELLIPTIC CURVES , 2004 .

[43]  Gary L. Mullen,et al.  Finite Fields and Applications , 2007, Student mathematical library.

[44]  Laura Hitt On the Minimal Embedding Field , 2007, Pairing.

[45]  Steven D. Galbraith,et al.  Supersingular Curves in Cryptography , 2001, ASIACRYPT.

[46]  Brent Waters,et al.  Fully Collusion Resistant Traitor Tracing with Short Ciphertexts and Private Keys , 2006, EUROCRYPT.

[47]  Paulo S. L. M. Barreto,et al.  Efficient pairing computation on supersingular Abelian varieties , 2007, IACR Cryptol. ePrint Arch..

[48]  Hui Zhu Group Structures of Elementary Supersingular Abelian Varieties over Finite Fields , 1998 .

[49]  Alice Silverberg,et al.  Compression in Finite Fields and Torus-Based Cryptography , 2008, SIAM J. Comput..

[50]  Brent Waters,et al.  Compact Group Signatures Without Random Oracles , 2006, EUROCRYPT.

[51]  Pierrick Gaudry,et al.  Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem , 2009, J. Symb. Comput..

[52]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[53]  Alice Silverberg,et al.  Using Primitive Subgroups to Do More with Fewer Bits , 2004, ANTS.

[54]  G. Shimura Abelian Varieties with Complex Multiplication and Modular Functions , 1997 .

[55]  Rafail Ostrovsky,et al.  Perfect Non-Interactive Zero Knowledge for NP , 2006, IACR Cryptol. ePrint Arch..

[56]  John Tate,et al.  Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda) , 1969 .

[57]  Hui June Zhu,et al.  Supersingular Abelian Varieties over Finite Fields , 2001 .

[58]  A. Miyaji,et al.  New Explicit Conditions of Elliptic Curve Traces for FR-Reduction , 2001 .

[59]  I. Duursma Class numbers for some hyperelliptic curves , 1996 .

[60]  André Weil,et al.  Adeles and algebraic groups , 1982 .

[61]  Moti Yung,et al.  Advances in Cryptology — CRYPTO 2002 , 2002, Lecture Notes in Computer Science.