On Exchangeability in Network Models

We derive representation theorems for exchangeable distributions on finite and infinite graphs using elementary arguments based on geometric and graph-theoretic concepts. Our results elucidate some of the key differences, and their implications, between statistical network models that are finitely exchangeable and models that define a consistent sequence of probability distributions on graphs of increasing size. 

[1]  A. Roverato,et al.  Log-mean linear models for binary data , 2011, 1109.6239.

[2]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[3]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[4]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[5]  Malempati M. Rao,et al.  Projective limits of probability spaces , 1971 .

[6]  Daniel M. Roy,et al.  Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Alexander Volfovsky,et al.  2 A ug 2 01 4 CHARACTERIZATION OF FINITE GROUP INVARIANT DISTRIBUTIONS , 2014 .

[8]  G. Eagleson,et al.  Limit theorems for weakly exchangeable arrays , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  P. Ressel Exchangeability and semigroups , 2008 .

[10]  Tom A. B. Snijders Conditional Marginalization for Exponential Random Graph Models , 2010 .

[11]  G. Székely,et al.  Definetti’s Theorem for Abstract Finite Exchangeable Sequences , 2006 .

[12]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[13]  D. Freedman,et al.  On the statistics of vision: The Julesz conjecture☆ , 1981 .

[14]  Christian Berg,et al.  Positive definite functions on Abelian semigroups , 1976 .

[15]  T. Richardson,et al.  Binary models for marginal independence , 2007, 0707.3794.

[16]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[17]  J. Spencer,et al.  Strong independence of graph copy functions , 1978 .

[18]  S. Lauritzen Exchangeable Rasch Matrices∗ , 2007 .

[19]  F. M. Atúš FINITE PARTIALLY EXCHANGEABLE ARRAYS , 1995 .

[20]  B. Silverman,et al.  Limit theorems for dissociated random variables , 1976, Advances in Applied Probability.

[21]  A. Rinaldo,et al.  CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS. , 2011, Annals of statistics.

[22]  O. Kallenberg Probabilistic Symmetries and Invariance Principles , 2005 .

[23]  P. Diaconis,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[24]  D. Aldous Exchangeability and related topics , 1985 .

[25]  P. Erdos,et al.  Strong Independence of Graphcopy Functions , 1979 .

[26]  W. Dempsey,et al.  A framework for statistical network modeling , 2015, 1509.08185.

[27]  David A. Freedman,et al.  A Remark on the Difference between Sampling with and without Replacement , 1977 .

[28]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[29]  P. Diaconis Finite forms of de Finetti's theorem on exchangeability , 1977, Synthese.

[30]  A. Rinaldo,et al.  Random networks, graphical models and exchangeability , 2017, 1701.08420.