ALBERT-LUDWIGS-UNIVERSIT ¨ AT FREIBURG

[1]  Rolf Backofen,et al.  Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering , 2007, PLoS Comput. Biol..

[2]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[3]  Rolf Backofen,et al.  INFO-RNA - a fast approach to inverse RNA folding , 2006, Bioinform..

[4]  Gad M. Landau,et al.  Local Alignment of RNA Sequences with Arbitrary Scoring Schemes , 2006, CPM.

[5]  Deniz Dalli,et al.  StrAl: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time , 2006, Bioinform..

[6]  Tomaso Poggio,et al.  Learning a dictionary of shape-components in visual cortex: comparison with neurons, humans and machines , 2006 .

[7]  Cordelia Schmid,et al.  3D Object Modeling and Recognition Using Local Affine-Invariant Image Descriptors and Multi-View Spatial Constraints , 2006, International Journal of Computer Vision.

[8]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .

[9]  Martial Hebert,et al.  Efficient visual event detection using volumetric features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[10]  Hans Burkhardt,et al.  Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants , 2005, DAGM-Symposium.

[11]  Wolfram Burgard,et al.  Vision-Based 3D Object Localization Using Probabilistic Models of Appearance , 2005, DAGM-Symposium.

[12]  P. Perona,et al.  Why does natural scene categorization require little attention? Exploring attentional requirements for natural and synthetic stimuli , 2005 .

[13]  Javier Larrosa,et al.  Unifying tree decompositions for reasoning in graphical models , 2005, Artif. Intell..

[14]  M. Davy,et al.  An online kernel change detection algorithm , 2005, IEEE Transactions on Signal Processing.

[15]  David R. Hardoon,et al.  fMRI Analysis via One-class Machine Learning Techniques , 2005, IJCAI.

[16]  Sung Bum Pan,et al.  Local and Global Feature Extraction for Face Recognition , 2005, AVBPA.

[17]  W.E. Green,et al.  A competition to identify key challenges for unmanned aerial robots in near-earth environments , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[18]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Pietro Perona,et al.  A sparse object category model for efficient learning and exhaustive recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Matthew A. Brown,et al.  Unsupervised 3D object recognition and reconstruction in unordered datasets , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[21]  Duy-Dinh Le,et al.  Fusion of local and global features for efficient object detection , 2005, IS&T/SPIE Electronic Imaging.

[22]  Chuong B. Do,et al.  ProbCons: Probabilistic consistency-based multiple sequence alignment. , 2005, Genome research.

[23]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Peter J. Stuckey,et al.  Progressive Multiple Alignment Using Sequence Triplet Optimizations and Three-residue Exchange Costs , 2004, J. Bioinform. Comput. Biol..

[25]  Martial Hebert,et al.  Shape-based recognition of wiry objects , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Rolf Backofen,et al.  Local Sequence-structure Motifs in Rna , 2004, J. Bioinform. Comput. Biol..

[27]  Tomaso Poggio,et al.  A New Biologically Motivated Framework for Robust Object Recognition , 2004 .

[28]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[29]  Rolf Backofen,et al.  Fast detection of common sequence structure patterns in RNAs , 2004, J. Discrete Algorithms.

[30]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[31]  Masahito Yamamoto,et al.  Vision-based positioning system for indoor blimp robot , 2004 .

[32]  C. Schmid,et al.  Scale-invariant shape features for recognition of object categories , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[33]  Pietro Perona,et al.  A Visual Category Filter for Google Images , 2004, ECCV.

[34]  Simon Lacroix,et al.  The Autonomous Blimp Project of LAAS-CNRS: Achievements in Flight Control and Terrain Mapping , 2004, Int. J. Robotics Res..

[35]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[36]  David G. Lowe,et al.  Probabilistic Models of Appearance for 3-D Object Recognition , 2000, International Journal of Computer Vision.

[37]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[38]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[39]  Cordelia Schmid,et al.  Shape recognition with edge-based features , 2003, BMVC.

[40]  Bin Ma,et al.  Alignment between Two Multiple Alignments , 2003, CPM.

[41]  Gustavo Carneiro,et al.  Multi-scale phase-based local features , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[42]  N. Kilroe,et al.  Line inspections - eyes and ears of RCM , 2003, 2003 IEEE 10th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance, 2003. 2003 IEEE ESMO..

[43]  Martial Hebert,et al.  Discriminative techniques for the recognition of complex-shaped objects , 2003 .

[44]  Josep Llados,et al.  THE HOUGH TRANSFORM AS A TOOL FOR IMAGE ANALYSIS , 2003 .

[45]  Hans Burkhardt,et al.  General-purpose object recognition in 3D volume data sets using gray-scale invariants - classification of airborne pollen-grains recorded with a confocal laser scanning microscope , 2002, Object recognition supported by user interaction for service robots.

[46]  Adam Kowalczyk,et al.  One class SVM for yeast regulation prediction , 2002, SKDD.

[47]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[48]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[49]  Masahito Yamamoto,et al.  Development of autonomous blimp robot with intelligent control , 2002, IWEC.

[50]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[51]  Bin Ma,et al.  A General Edit Distance between RNA Structures , 2002, J. Comput. Biol..

[52]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[53]  Tomaso A. Poggio,et al.  Face recognition with support vector machines: global versus component-based approach , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[54]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[55]  Robert D. Carr,et al.  101 optimal PDB structure alignments: a branch-and-cut algorithm for the maximum contact map overlap problem , 2001, RECOMB.

[56]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[57]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[58]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[59]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[60]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[61]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[62]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Nathalie Japkowicz,et al.  Concept learning in the absence of counterexamples: an autoassociation-based approach to classification , 1999 .

[64]  Thom W. Frühwirth,et al.  Theory and Practice of Constraint Handling Rules , 1998, J. Log. Program..

[65]  Josué Jr. Guimarães Ramos,et al.  A semi-autonomous robotic airship for environmental monitoring missions , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[66]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[67]  Gunter Ritter,et al.  Outliers in statistical pattern recognition and an application to automatic chromosome classification , 1997, Pattern Recognit. Lett..

[68]  Stephen J. Roberts,et al.  Novelty, confidence and errors in connectionist systems , 1996 .

[69]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[70]  Don R. Hush,et al.  Network constraints and multi-objective optimization for one-class classification , 1996, Neural Networks.

[71]  Lucas C. Parra,et al.  Statistical Independence and Novelty Detection with Information Preserving Nonlinear Maps , 1996, Neural Computation.

[72]  M. M. Moya,et al.  Cueing, feature discovery, and one-class learning for synthetic aperture radar automatic target recognition , 1995, Neural Networks.

[73]  Hanns Schulz-Mirbach,et al.  Invariant Features for Gray Scale Images , 1995, DAGM-Symposium.

[74]  Michael Brady,et al.  Novelty detection for the identification of masses in mammograms , 1995 .

[75]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[76]  David G. Lowe,et al.  Learning to recognize objects in images: acquiring and using probabilistic models of appearance , 1995 .

[77]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[78]  F M Richards,et al.  Optimal sequence selection in proteins of known structure by simulated evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[80]  Shoji Noguchi,et al.  Flow and solute transport through the soil matrix and macropores of a hillslope segment , 1994 .

[81]  Christopher M. Bishop,et al.  Novelty detection and neural network validation , 1994 .

[82]  Keinosuke Fukunaga,et al.  Statistical Pattern Recognition , 1993, Handbook of Pattern Recognition and Computer Vision.

[83]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  M. M. Moya,et al.  One-class classifier networks for target recognition applications , 1993 .

[85]  David A. Forsyth,et al.  Efficient model library access by projectively invariant indexing functions , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[86]  D. Mackay,et al.  Bayesian methods for adaptive models , 1992 .

[87]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[88]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[89]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[90]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[91]  A. J. Mistlin,et al.  Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. , 1984, Human neurobiology.

[92]  J. Rothwell Principles of Neural Science , 1982 .

[93]  Hans P. Moravec Rover Visual Obstacle Avoidance , 1981, IJCAI.

[94]  D. I. Smith,et al.  Water tracing in tropical regions, the use of fluorometric techniques in Jamaica , 1976 .

[95]  M. Potter Meaning in visual search. , 1975, Science.

[96]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[97]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[98]  D H HUBEL,et al.  THE VISUAL CORTEX OF THE BRAIN. , 1963, Scientific American.

[99]  A. Hurwitz,et al.  über die Erzeugung der Invarianten durch Integration , 1963 .

[100]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[101]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.