Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1

Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of “effective” feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events.

[1]  Arvind Kumar,et al.  The High-Conductance State of Cortical Networks , 2008, Neural Computation.

[2]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[3]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  P. König,et al.  Primary Visual Cortex Represents the Difference Between Past and Present , 2013, Cerebral cortex.

[5]  Kenneth D Miller,et al.  Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex , 2001, Current Opinion in Neurobiology.

[6]  Li I. Zhang,et al.  Strengthening of Direction Selectivity by Broadly Tuned and Spatiotemporally Slightly Offset Inhibition in Mouse Visual Cortex. , 2015, Cerebral cortex.

[7]  M. Carandini,et al.  Suppression without Inhibition in Visual Cortex , 2002, Neuron.

[8]  Nicholas J. Priebe,et al.  Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex , 2005, The Journal of Neuroscience.

[9]  M. Scanziani,et al.  Equalizing Excitation-Inhibition Ratios across Visual Cortical Neurons , 2014, Nature.

[10]  Johannes Schemmel,et al.  Spike-Frequency Adapting Neural Ensembles: Beyond Mean Adaptation and Renewal Theories , 2007, Neural Computation.

[11]  Elena A Allen,et al.  Dynamic Spatial Processing Originates in Early Visual Pathways , 2006, The Journal of Neuroscience.

[12]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[13]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[15]  A. Aertsen,et al.  Beyond the Cortical Column: Abundance and Physiology of Horizontal Connections Imply a Strong Role for Inputs from the Surround , 2011, Front. Neurosci..

[16]  Chun-I Yeh,et al.  Temporal precision in the neural code and the timescales of natural vision , 2007, Nature.

[17]  M. Scanziani,et al.  Distinct recurrent versus afferent dynamics in cortical visual processing , 2015, Nature Neuroscience.

[18]  Y. Frégnac,et al.  The “silent” surround of V1 receptive fields: theory and experiments , 2003, Journal of Physiology-Paris.

[19]  A. Aertsen,et al.  Conditions for Propagating Synchronous Spiking and Asynchronous Firing Rates in a Cortical Network Model , 2008, The Journal of Neuroscience.

[20]  Garrett B Stanley,et al.  Timing Precision in Population Coding of Natural Scenes in the Early Visual System , 2008, PLoS biology.

[21]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[22]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[23]  M. Young,et al.  Centre‐surround interactions in response to natural scene stimulation in the primary visual cortex , 2005, The European journal of neuroscience.

[24]  Matthew R. Krause,et al.  Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation , 2010, Neuron.

[25]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[26]  Pierre Yger,et al.  PyNN: A Common Interface for Neuronal Network Simulators , 2008, Front. Neuroinform..

[27]  Robin Shattock,et al.  In Vitro and In Vivo: The Story of Nonoxynol 9 , 2005, Journal of acquired immune deficiency syndromes.

[28]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[29]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Yves Frégnac,et al.  Hidden Complexity of Synaptic Receptive Fields in Cat V1 , 2014, The Journal of Neuroscience.

[31]  K. Miller,et al.  Different Roles for Simple-Cell and Complex-Cell Inhibition in V1 , 2003, The Journal of Neuroscience.

[32]  Harvey A Swadlow,et al.  Brain state and contrast sensitivity in the awake visual thalamus , 2006, Nature Neuroscience.

[33]  J A Gunn,et al.  The action of some amines related to adrenaline. Cyclohexylalkylamines , 1940, The Journal of physiology.

[34]  K. Miller,et al.  Electronic Mail: , 2001 .

[35]  Nicholas J. Priebe,et al.  Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex , 2005, Neuron.

[36]  Ad Aertsen,et al.  Functional consequences of correlated excitatory and inhibitory conductances in cortical networks , 2010, Journal of Computational Neuroscience.

[37]  J. Alonso,et al.  Brain State Effects on Layer 4 of the Awake Visual Cortex , 2014, The Journal of Neuroscience.

[38]  L.F. Abbott,et al.  Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks , 2009, Nature Neuroscience.

[39]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[40]  Yves Frégnac,et al.  Adaptation of the simple or complex nature of V1 receptive fields to visual statistics , 2011, Nature Neuroscience.

[41]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[42]  G. J. Tomko,et al.  Neuronal variability: non-stationary responses to identical visual stimuli. , 1974, Brain research.

[43]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[44]  Yves Frégnac,et al.  Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons , 2013, Front. Neural Circuits.

[45]  L. Paninski,et al.  Temporal Precision in the Visual Pathway through the Interplay of Excitation and Stimulus- Driven Suppression , 2022 .

[46]  F. Chavane,et al.  Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity , 2011, Front. Syst. Neurosci..

[47]  L. Martinez,et al.  Circuits that build visual cortical receptive fields , 2006, Trends in Neurosciences.

[48]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[49]  Ovidiu F. Jurjuţ,et al.  Effects of Locomotion Extend throughout the Mouse Early Visual System , 2014, Current Biology.

[50]  Markus Diesmann,et al.  Advancing the Boundaries of High-Connectivity Network Simulation with Distributed Computing , 2005, Neural Computation.

[51]  Garrett B Stanley,et al.  The episodic nature of spike trains in the early visual pathway. , 2010, Journal of neurophysiology.

[52]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[53]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[54]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[55]  Ad Aertsen,et al.  Gating of Signal Propagation in Spiking Neural Networks by Balanced and Correlated Excitation and Inhibition , 2010, The Journal of Neuroscience.

[56]  Y. Frégnac,et al.  The Role of Delayed Suppression in Slow and Fast Contrast Adaptation in V1 Simple Cells , 2013, The Journal of Neuroscience.

[57]  A. Aertsen,et al.  Neural representation of the acoustic biotope: On the existence of stimulus-event relations for sensory neurons , 1979, Biological Cybernetics.

[58]  Bogdan Dreher,et al.  ‘Simplification’ of responses of complex cells in cat striate cortex: suppressive surrounds and ‘feedback’ inactivation , 2006, The Journal of physiology.

[59]  Wolfgang Maass,et al.  Cerebral Cortex Advance Access published February 15, 2006 A Statistical Analysis of Information- Processing Properties of Lamina-Specific , 2022 .

[60]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[61]  Shih-Cheng Yen,et al.  Natural Movies Evoke Spike Trains with Low Spike Time Variability in Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[62]  E J Chichilnisky,et al.  Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.

[63]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[64]  Alex S. Ferecskó,et al.  The fractions of short- and long-range connections in the visual cortex , 2009, Proceedings of the National Academy of Sciences.

[65]  Randy M Bruno,et al.  Synchrony in sensation , 2011, Current Opinion in Neurobiology.

[66]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[67]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[68]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[69]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[70]  Garrett B. Stanley,et al.  Frontiers in Systems Neuroscience Systems Neuroscience 2 Materials and Methods 2.1 Neural Recording , 2022 .

[71]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[72]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[73]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[74]  Qi Wang,et al.  The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature Selectivity , 2014, PLoS Comput. Biol..

[75]  E. Fetz,et al.  Synaptic Interactions between Primate Precentral Cortex Neurons Revealed by Spike-Triggered Averaging of Intracellular Membrane Potentials In Vivo , 1996, The Journal of Neuroscience.

[76]  M. Meister,et al.  Decorrelation and efficient coding by retinal ganglion cells , 2012, Nature Neuroscience.

[77]  Qasim Zaidi,et al.  Neuronal nonlinearity explains greater visual spatial resolution for darks than lights , 2014, Proceedings of the National Academy of Sciences.

[78]  B. Mandelbrot,et al.  RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON. , 1964, Biophysical journal.

[79]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[80]  Li I. Zhang,et al.  Broad Inhibition Sharpens Orientation Selectivity by Expanding Input Dynamic Range in Mouse Simple Cells , 2011, Neuron.

[81]  K. Miller,et al.  Opponent Inhibition A Developmental Model of Layer 4 of the Neocortical Circuit , 2002, Neuron.

[82]  Li I. Zhang,et al.  Linear Transformation of Thalamocortical input by Intracortical Excitation , 2013, Nature Neuroscience.

[83]  Michael Graupner,et al.  Synaptic Input Correlations Leading to Membrane Potential Decorrelation of Spontaneous Activity in Cortex , 2013, The Journal of Neuroscience.

[84]  D. Ferster,et al.  Feedforward Origins of Response Variability Underlying Contrast Invariant Orientation Tuning in Cat Visual Cortex , 2012, Neuron.

[85]  Harvey A Swadlow,et al.  Stability of Thalamocortical Synaptic Transmission across Awake Brain States , 2009, The Journal of Neuroscience.

[86]  J. Alonso,et al.  COLUMNAR ORGANIZATION OF SPATIAL PHASE IN VISUAL CORTEX , 2014, Nature Neuroscience.

[87]  Y. Frégnac,et al.  In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices , 2008, Journal of Neuroscience Methods.

[88]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[89]  Pierre Yger,et al.  Network-State Modulation of Power-Law Frequency-Scaling in Visual Cortical Neurons , 2009, PLoS Comput. Biol..

[90]  B. Connors,et al.  Differential Regulation of Neocortical Synapses by Neuromodulators and Activity , 1997, Neuron.

[91]  M. Carandini,et al.  Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and Natural Stimuli , 2008, Neuron.

[92]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[93]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[94]  M. Castro-Alamancos,et al.  Cortical sensory suppression during arousal is due to the activity‐dependent depression of thalamocortical synapses , 2002, The Journal of physiology.

[95]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[96]  M. Carandini,et al.  Cortical State Determines Global Variability and Correlations in Visual Cortex , 2015, The Journal of Neuroscience.

[97]  Yves Frégnac,et al.  Cortical Correlates of Low-Level Perception: From Neural Circuits to Percepts , 2015, Neuron.

[98]  Nicholas J. Priebe,et al.  Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[99]  Leena A. Ibrahim,et al.  Broadening of Inhibitory Tuning Underlies Contrast-Dependent Sharpening of Orientation Selectivity in Mouse Visual Cortex , 2012, The Journal of Neuroscience.

[100]  Li I. Zhang,et al.  Topography and synaptic shaping of direction selectivity in primary auditory cortex , 2003, Nature.

[101]  A. Aertsen,et al.  Neuronal Integration of Synaptic Input in the Fluctuation-Driven Regime , 2004, The Journal of Neuroscience.

[102]  H. Markram,et al.  t Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses , 2000, The Journal of Neuroscience.

[103]  P. Marsden,et al.  Expression in Cardiac Myocytes In Vitro and In Vivo p 38 MAP Kinase Signaling Cascade Regulates Cyclooxygenase-2 − MAP Kinase Kinase 6 , 2003 .

[104]  Paolo Santi Random Walk Models , 2012 .

[105]  Jessica A. Cardin,et al.  Cellular Mechanisms of Temporal Sensitivity in Visual Cortex Neurons , 2010, The Journal of Neuroscience.

[106]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[107]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[108]  J. Alonso,et al.  Faster Thalamocortical Processing for Dark than Light Visual Targets , 2011, The Journal of Neuroscience.

[109]  Moritz Helias,et al.  Neuroinformatics Original Research Article Pynest: a Convenient Interface to the Nest Simulator , 2022 .

[110]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[111]  D. Tolhurst,et al.  The effects of contrast on the linearity of spatial summation of simple cells in the cat's striate cortex , 2004, Experimental Brain Research.

[112]  J. Alonso,et al.  Getting Drowsy? Alert/Nonalert Transitions and Visual Thalamocortical Network Dynamics , 2011, The Journal of Neuroscience.

[113]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[114]  Andrew P Davison,et al.  Reliable Recall of Spontaneous Activity Patterns in Cortical Networks , 2009, The Journal of Neuroscience.

[115]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[116]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[117]  Idan Segev,et al.  A Biologically Realistic Model of Contrast Invariant Orientation Tuning by Thalamocortical Synaptic Depression , 2007, The Journal of Neuroscience.

[118]  Li I. Zhang,et al.  Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex , 2015, The Journal of Neuroscience.

[119]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[120]  P. König,et al.  Natural scene evoked population dynamics across cat primary visual cortex captured with voltage-sensitive dye imaging. , 2011, Cerebral cortex.

[121]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[122]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[123]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[124]  F. Rieke,et al.  Noise correlations improve response fidelity and stimulus encoding , 2010, Nature.

[125]  L. Abbott,et al.  Redundancy Reduction and Sustained Firing with Stochastic Depressing Synapses , 2002, The Journal of Neuroscience.

[126]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[127]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[128]  Siddharth Kalla Statistical Reliability , 2018 .

[129]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[130]  J. Rothman,et al.  Synaptic depression enables neuronal gain control , 2009, Nature.