COMPUTING EXPONENTIALS OF SKEW-SYMMETRIC MATRICES AND LOGARITHMS OF ORTHOGONAL MATRICES

The authors show that there is a generalization of Rodrigues’ formula for computing the exponential map exp: so(n) →SO(n) from skewsymmetric matrices to orthogonal matrices when n ≥ 4, and give a method for computing some determination of the (multivalued) function log: SO(n) → so(n). The key idea is the decomposition of a skew-symmetric n×n matrix B in terms of (unique) skew-symmetric matrices B1,...,Bp obtained from the diagonalization of B and satisfying some simple algebraic identities. A subproblem arising in computing logR, where R ∈SO(n), is the problem of finding a skewsymmetric matrix B, given the matrix B 2 , and knowing that B 2 has eigenvalues −1 and 0. The authors also consider the exponential map exp: se(n) →SE(n), where se(n) is the Lie algebra of the Lie group SE(n) of (affine) rigid motions. The authors show that there is a Rodrigues-like formula for computing this exponential map, and give a method for computing some determination of the (multivalued) function log: SE(n) → se(n). This yields a direct proof of the surjectivity of exp: se(n) →SE(n).

[1]  C. Chevalley Theory of Lie Groups , 1946 .

[2]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[3]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[6]  Bert Jüttler,et al.  Visualization of moving objects using dual quaternion curves , 1994, Comput. Graph..

[7]  S. Shankar Sastry,et al.  A mathematical introduction to robotics manipulation , 1994 .

[8]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[9]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[10]  F. Park,et al.  Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .

[11]  Sung Yong Shin,et al.  A general construction scheme for unit quaternion curves with simple high order derivatives , 1995, SIGGRAPH.

[12]  M. G. Wagner,et al.  Computer-Aided Design With Spatial Rational B-Spline Motions , 1996 .

[13]  Sung Yong Shin,et al.  A Compact Differential Formula for the First Derivative of a Unit Quaternion Curve , 1996, Comput. Animat. Virtual Worlds.

[14]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[15]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[16]  Bert Jüttler An osculating motion with second order contact for spatial Euclidean motions , 1997 .

[17]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[18]  Bert Jüttler,et al.  Cartesian spline interpolation for industrial robots , 1998, Comput. Aided Des..

[19]  A. Laub,et al.  A Schur-Fréchet Algorithm for Computing the Logarithm and Exponential of a Matrix , 1998, SIAM J. Matrix Anal. Appl..

[20]  Otto Röschel,et al.  Rational motion design - a survey , 1998, Comput. Aided Des..

[21]  Bert Jüttler,et al.  Rational motion-based surface generation , 1999, Comput. Aided Des..

[22]  Dimitris N. Metaxas,et al.  Curved path human locomotion on uneven terrain , 2000 .

[23]  Nicholas J. Higham,et al.  Approximating the Logarithm of a Matrix to Specified Accuracy , 2000, SIAM J. Matrix Anal. Appl..