Investigation of novel crystal structures of Bi-Sb binaries predicted using the minima hopping method.

Semi-conducting alloys BixSb1-x have emerged as a potential candidate for topological insulators and are well known for their novel thermoelectric properties. In this work, we present a systematic study of the low-energy phases of 35 different compositions of BixSb1-x (0 < x < 1) at zero temperature and zero pressure. We explore the potential energy surface of BixSb1-x as a function of Sb concentration by using the ab initio minima hopping structural search method. Even though Bi and Sb crystallize in the same R3[combining macron]m space group, our calculations indicate that BixSb1-x alloys can have several other thermodynamically stable crystal structures. In addition to the configurations on the convex hull, we find a large number of metastable structures which are dynamically stable. The electronic band structure calculations of several stable phases reveal the presence of strong spin-orbit interaction leading to the Rashba-Dresselhaus spin-splitting of bands which is of great interest for spintronics applications. We also find an orthorhombic structure of BiSb in the Imm2 space group which exhibits signatures of type-II Weyl semimetal. Additionally, we have studied the thermoelectric properties of the selected structures. Regarding thermoelectric properties, we find that the compositions which crystallize in the rhombohedral structure exhibit values of the Seebeck coefficient and the power factor similar to that of Bi2Te3 at room temperature, while the theoretical maximum figure of merit (ZeT) is smaller than that of Bi2Te3. We observe enhancement in the thermopower with the increase in the strength of the Rashba-Dresselhaus spin-splitting effect.

[1]  David J. Singh,et al.  High-temperature thermoelectric performance of heavily doped PbSe , 2010 .

[2]  S. Murakami Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase , 2007, 0710.0930.

[3]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  A. Laio,et al.  Predicting crystal structures: the Parrinello-Rahman method revisited. , 2002, Physical review letters.

[6]  J. Pannetier,et al.  Prediction of crystal structures from crystal chemistry rules by simulated annealing , 1990, Nature.

[7]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[8]  Y. Tokura,et al.  Giant Rashba-type spin splitting in bulk BiTeI. , 2011, Nature materials.

[9]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[10]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[11]  H. Scherrer,et al.  Transport properties of Bi-rich Bi-Sb alloys , 1996 .

[12]  Stefan Goedecker,et al.  High-pressure structures of disilane and their superconducting properties. , 2012, Physical review letters.

[13]  Jihui Yang,et al.  Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI , 2014 .

[14]  David J. Singh Doping-dependent thermopower of PbTe from Boltzmann transport calculations , 2010 .

[15]  D. Thompson,et al.  Thermoelectric properties of BiSb alloys , 1985 .

[16]  Sunglae Cho,et al.  Thermoelectric transport properties of n-doped and p-doped Bi0.91Sb0.09 alloy thin films , 1999 .

[17]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[18]  Qiang Zhu,et al.  Evolutionary metadynamics: a novel method to predict crystal structures , 2012, 1204.3650.

[19]  Tiago F. T. Cerqueira,et al.  Sodium–gold binaries: novel structures for ionic compounds from an ab initio structural search , 2013 .

[20]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[21]  L. Golub,et al.  Interplay of Rashba/Dresselhaus spin splittings probed by photogalvanic spectroscopy –A review , 2014 .

[22]  H. Berger,et al.  Lattice Parameter Study in the Bi1–xSbx Solid‐solution System , 1982 .

[23]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[24]  S. Goedecker,et al.  Novel crystal structures for lithium–silicon alloy predicted by minima hopping method , 2016 .

[25]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[26]  L. Fu,et al.  Surface states and topological invariants in three-dimensional topological insulators: Application to Bi 1 − x Sb x , 2008 .

[27]  J. C. Schön,et al.  First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization , 1996 .

[28]  G. Mahan,et al.  Thermoelectric properties of Sb 2 Te 3 under pressure and uniaxial stress , 2003 .

[29]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[30]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[31]  R. T. Smith,et al.  Lattice parameter and density in bismuth-antimony alloys , 1968 .

[32]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[33]  Hans Wondratschek,et al.  Brillouin-zone database on the Bilbao Crystallographic Server. , 2014, Acta crystallographica. Section A, Foundations and advances.

[34]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[35]  D. Raabe,et al.  Design of Mg alloys: The effects of Li concentration on the structure and elastic properties in the Mg–Li binary system by first principles calculations , 2017 .

[36]  Stefan Goedecker,et al.  Structure of large gold clusters obtained by global optimization using the minima hopping method , 2009 .

[37]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[38]  N. Suzuki,et al.  Application of Frozen–Phonon Method to Lattice Dynamics in FCC Solid Iodine , 1996 .

[39]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[40]  Stefan Goedecker,et al.  Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications , 2012, 1203.5669.

[41]  R. Arita,et al.  Origin of giant bulk Rashba splitting: Application to BiTeI , 2011, 1105.2757.

[42]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[43]  Chris J Pickard,et al.  High-pressure phases of silane. , 2006, Physical review letters.

[44]  Observation of Weyl nodes in TaAs , 2015, 1503.09188.

[45]  Guillermo Avendaño-Franco,et al.  Firefly Algorithm for Structural Search. , 2016, Journal of chemical theory and computation.

[46]  Hans Wondratschek,et al.  Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[47]  L. Balents Weyl electrons kiss , 2011 .

[48]  Stefan Goedecker,et al.  Crystal Structure of Cold Compressed Graphite , 2012 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[51]  Chaoxing Liu,et al.  Electronic structures and surface states of the topological insulator Bi 1 − x Sb x , 2009, 0901.2762.

[52]  A. Zyuzin,et al.  Topological response in Weyl semimetals and the chiral anomaly , 2012, 1206.1868.

[53]  Y. Kousa,et al.  Topological transition in Bi 1-xSb x studied as a function of Sb doping , 2011 .

[54]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[55]  P. Barone,et al.  Electric Control of the Giant Rashba Effect in Bulk GeTe , 2013, Advanced materials.

[56]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[57]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[58]  D. Qu,et al.  Observation of huge surface hole mobility in the topological insulator Bi(0.91)Sb(0.09) (111). , 2013, Physical review letters.

[59]  Jorge O. Sofo,et al.  Transport coefficients from first-principles calculations , 2003 .

[60]  Si Wu,et al.  Weyl semimetal with broken time reversal and inversion symmetries , 2012, 1201.3624.

[61]  Timothy S Bush,et al.  Evolutionary programming techniques for predicting inorganic crystal structures , 1995 .

[62]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[64]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[65]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[66]  K. Nakatsuji,et al.  Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator , 2009, 0902.2251.

[67]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[68]  Sunglae Cho,et al.  Transport properties of Bi 1−x Sb x alloy thin films grown on CdTe(111)B , 1999 .

[69]  Stefan Goedecker,et al.  Novel structural motifs in low energy phases of LiAlH4. , 2012, Physical review letters.