Separating Illumination and Surface Spectral from Multiple Color Signals

To separate a color signal into its components: illumination spectral power distribution and surface spectral reflectance, is an important issue on computer vision. And to separate, we use spectral power distribution, we proposed a minimization technique that, unlike the existing methods, uses multiple color signals. In our implementation, we introduce three different approaches: first, color signals obtained from two different surface reflectance lit by an identical illumination spectral power distribution; second, color signal from an identical surface reflectance lit by different illumination spectral power distributions; and third, color signals from identical surface reflectance but with different types of reflection components (diffuse and specular reflectance) lit by identical illumination spectral power distribution. Using multiple color signals can improve the robustness of the estimation, since we can obtain more constraints in the input data. Publication 1. A. Ikari, Robby T.Tan and K. Ikeuchi, “Separating Illumination and Surface Spectral from Multiple Color Signals”, Asian Conference on Computer Vision, 2004, p264-269. Single point approach: Illumination and reflectance basis function

[1]  Brian V. Funt,et al.  Color constancy under varying illumination , 1995, Proceedings of IEEE International Conference on Computer Vision.

[2]  B A Wandell,et al.  Scene illuminant classification: brighter is better. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  G D Finlayson,et al.  Color constancy at a pixel. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  S. J.P. Characteristic spectra of Munsell colors , 2002 .

[5]  M. D'Zmura Color constancy : surface color from changing illumination , 1992 .

[6]  Markku Hauta-Kasari,et al.  Spectral-Based Illumination Estimation and Color Correction , 1999 .

[7]  B. Wandell,et al.  Standard surface-reflectance model and illuminant estimation , 1989 .

[8]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[10]  Jon Y. Hardeberg,et al.  On the spectral dimensionality of object colours , 2002, CGIV.

[11]  B. Wandell,et al.  Natural scene-illuminant estimation using the sensor correlation , 2002, Proc. IEEE.

[12]  J. Marchant,et al.  Spectral invariance under daylight illumination changes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[14]  Shree K. Nayar,et al.  Generalized Mosaicing: Wide Field of View Multispectral Imaging , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Joost van de Weijer,et al.  Colour Constancy from Hyper-Spectral Data , 2000, BMVC.

[16]  Naoki Chiba,et al.  Feature-based image mosaicing , 2000, Syst. Comput. Jpn..

[17]  Shoji Tominaga,et al.  MULTICHANNEL VISION SYSTEM FOR ESTIMATING SURFACE AND ILLUMINATION FUNCTIONS , 1996 .

[18]  Shoji Tominaga,et al.  Surface Identification Using the Dichromatic Reflection Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Glenn Healey,et al.  What is the spectral dimensionality of illumination functions in outdoor scenes? , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[20]  Naoki Chiba,et al.  Feature-Based Image Mosaicing , 1998, MVA.

[21]  Kenneth Turkowski,et al.  Registration, calibration and blending in creating high quality panoramas , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[22]  Gerald Schaefer,et al.  Solving for Colour Constancy using a Constrained Dichromatic Reflection Model , 2001, International Journal of Computer Vision.

[23]  Po-Rong Chang,et al.  Constrained nonlinear optimization approaches to color-signal separation , 1995, IEEE Trans. Image Process..

[24]  J. Cohen Dependency of the spectral reflectance curves of the Munsell color chips , 1964 .

[25]  Mark S. Drew,et al.  Separating a Color Signal into Illumination and Surface Reflectance Components: Theory and Applications , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Hsien-Che Lee,et al.  Modeling Light Reflection for Computer Color Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Katsushi Ikeuchi,et al.  Illumination chromaticity estimation using inverse-intensity chromaticity space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and environment maps , 1997, SIGGRAPH.