Native diversity buffers against severity of non-native tree invasions.

Sara E. Kuebbing | M. Herold | T. Lauber | N. Picard | F. Rovero | A. Marshall | Jean‐François Bastin | C. Zohner | T. Crowther | F. Kraxner | B. Enquist | O. Phillips | E. Broadbent | P. Brancalion | A. A. Almeyda Zambrano | G. Nabuurs | A. Shvidenko | D. Gianelle | Y. Malhi | D. Coomes | S. Lewis | T. Feldpausch | I. Amaral | J. Barroso | M. Bastian | F. Bongers | C. Clark | L. Ferreira | D. Harris | Emanuel H. Martin | A. Araujo-Murakami | Alexander Parada-Gutierrez | L. Poorter | D. Sheil | J. Silva-Espejo | M. Silveira | T. Do | T. Baker | Yude Pan | Mait Lang | E. Cienciala | M. Köhl | R. Chazdon | S. Vieira | H. Verbeeck | J. Herbohn | D. Neill | N. Pitman | L. Arroyo | G. Aymard | O. Bánki | C. Mendoza | F. Valladares | G. D. Werner | G. Alberti | F. Wittmann | B. Swanepoel | P. Boeckx | M. Fischer | D. Kennard | T. Eyre | N. Imai | K. Kitayama | V. Avitabile | T. Zawila-Niedzwiecki | V. Johannsen | C. Antón-Fernández | V. Šebeň | K. von Gadow | Han Y. H. Chen | B. Schmid | A. Hemp | D. Maynard | B. Sonké | A. Vibrans | S. Wiser | E. Kearsley | B. DeVries | R. Gatti | J. Oleksyn | J. Svenning | A. Paquette | D. Schepaschenko | Zhi-Xin Zhu | J. Schöngart | N. Targhetta | M. Rodeghiero | P. Schall | C. Ammer | K. Stereńczak | H. Pretzsch | P. Saikia | M. L. Khan | H. Bruelheide | M. Scherer‐Lorenzen | T. Jucker | L. Frizzera | D. Piotto | R. Bałazy | F. Bussotti | S. de-Miguel | J. Gamarra | C. Merow | D. Kenfack | H. ter Steege | A. Mendoza | E. H. Honorio Coronado | B. Marimon | R. Brienen | B. Jaroszewicz | F. van der Plas | P. Niklaus | N. Lukina | O. Bouriaud | P. Sist | Eric B. Searle | Jingjing Liang | B. Hérault | H. Glick | G. Hengeveld | S. Pfautsch | H. Viana | Nadja Tchebakova | James Watson | Huicui Lu | E. Parfenova | H. S. Kim | Susanne Brandl | V. Neldner | M. Ngugi | A. Jagodziński | P. Peri | P. Álvarez-Loayza | R. Valencia | V. Wortel | R. Vásquez | J. Meave | E. Rutishauser | P. Birnbaum | M. Svoboda | A. Roopsind | Raquel S. Thomas | Mathieu Decuyper | Eric Marcon | N. Parthasarathy | B. H. Marimon‐Junior | C. Fletcher | R. César | A. L. de Gasper | Fernando Cornejo Valverde | K. Kartawinata | A. Poulsen | P. Umunay | S. Dayanandan | M. G. Nava-Miranda | G. Derroire | James Singh | G. Keppel | E. Tikhonova | J. Doležal | P. Saner | L. Alves | V. Usoltsev | F. Slik | Aurélie Dourdain | M. Parren | S. Rolim | H. Korjus | Chunyu Zhang | Xiu-hai Zhao | S. A. Mukul | T. Fayle | D. Laarmann | P. Ontikov | O. Martynenko | A. Hillers | A. F. Souza | David B. Clark | G. Colletta | V. Karminov | Christian Salas‐Eljatib | M. Abegg | L. Birigazzi | J. Cumming | I. C. Zo-Bi | A. Hector | A. B. Fandohan | Hyunkook Cho | Chelsea Chisholm | Minjee Park | J. van den Hoogen | Hua‐Feng Wang | Camille S. Delavaux | V. Moreno | P. Reich | T. Killeen | Goran Češljar | P. Crim | Esteban Alvarez-Davila | Freddy Ramirez Arevalo | I. Djordjevic | Hannsjoerg Woell | Omar Melo-Cruz | R. Bitariho | J. Serra-Diaz | J. Corral-Rivas | R. Zagt | Brian Salvin Maitner | I. Polo | Edgar Ortiz-Malavasi | Cang Hui | M. E. Van Nuland | N. L. Engone Obiang | Ilbin Jung | Zorayda Restrepo-Correa | S. Kepfer‐Rojas | B. V. Alvarado | Mo Zhou | Miscicki Stanislaw | Philip Mundhenk | R. Nevenic | M. T. F. Piedade | Niamh M Robmann | Yves C Adou Yao | Thomas T Ibanez | C. Joly

[1]  P. Hietz,et al.  Global relationships in tree functional traits , 2022, Nature Communications.

[2]  H. T. Luu,et al.  Making forest data fair and open , 2022, Nature Ecology & Evolution.

[3]  Maria E. Kamenetsky,et al.  The number of tree species on Earth , 2022, Proceedings of the National Academy of Sciences.

[4]  Nadejda A. Soudzilovskaia,et al.  Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation , 2021, Nature ecology & evolution.

[5]  F. Ashcroft Life at the extremes , 2021, Nature.

[6]  K. M. Ngo,et al.  Are Terrestrial Biological Invasions Different in the Tropics? , 2021, Annual Review of Ecology, Evolution, and Systematics.

[7]  C. Bradshaw,et al.  High and rising economic costs of biological invasions worldwide , 2021, Nature.

[8]  Stephen B. Stewart,et al.  Climate extreme variables generated using monthly time‐series data improve predicted distributions of plant species , 2021, Ecography.

[9]  P. Reich,et al.  Testing Darwin’s naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants , 2020 .

[10]  Ninad Avinash Mungi,et al.  Role of species richness and human impacts in resisting invasive species in tropical forests , 2020, Journal of Ecology.

[11]  Andrew M. Liebhold,et al.  Scientists' warning on invasive alien species , 2020, Biological reviews of the Cambridge Philosophical Society.

[12]  Kohske Takahashi,et al.  Create Elegant Data Visualisations Using the Grammar of Graphics [R package ggplot2 version 3.3.2] , 2020 .

[13]  Edzer Pebesma,et al.  Predicting into unknown space? Estimating the area of applicability of spatial prediction models , 2020, Methods in Ecology and Evolution.

[14]  Daniel S. Park,et al.  Darwin’s naturalization conundrum can be explained by spatial scale , 2020, Proceedings of the National Academy of Sciences.

[15]  P. Amarasekare,et al.  Latitudinal directionality in ectotherm invasion success , 2020, Proceedings of the Royal Society B.

[16]  Hugh Chen,et al.  From local explanations to global understanding with explainable AI for trees , 2020, Nature Machine Intelligence.

[17]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[18]  J. Finn,et al.  Biotic resistance to invasion is ubiquitous across ecosystems of the United States. , 2019, Ecology letters.

[19]  H. Qian,et al.  V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants , 2019, Ecography.

[20]  Diana H. Wall,et al.  Soil nematode abundance and functional group composition at a global scale , 2019, Nature.

[21]  Claude A. Garcia,et al.  The global tree restoration potential , 2019, Science.

[22]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[23]  D. Faith,et al.  Global conservation of phylogenetic diversity captures more than just functional diversity , 2019, Nature Communications.

[24]  J. Gurevitch,et al.  Correlation of native and exotic species richness: a global meta‐analysis finds no invasion paradox across scales , 2019, Ecology.

[25]  Jan Pergl,et al.  The Global Naturalized Alien Flora (GloNAF) database. , 2018, Ecology.

[26]  D. Richardson,et al.  Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success , 2018, Nature Communications.

[27]  Matthew W. Pennell,et al.  Prioritizing phylogenetic diversity captures functional diversity unreliably , 2018, Nature Communications.

[28]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[29]  A. Zanne,et al.  Functional biogeography of angiosperms: life at the extremes. , 2018, The New phytologist.

[30]  N. Mandrak,et al.  Preadaptation and Naturalization of Nonnative Species: Darwin's Two Fundamental Insights into Species Invasion. , 2018, Annual review of plant biology.

[31]  Per B. Brockhoff,et al.  lmerTest Package: Tests in Linear Mixed Effects Models , 2017 .

[32]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[33]  Yves Bergeron,et al.  Accounting for spatial autocorrelation improves the estimation of climate, physical environment and vegetation’s effects on boreal forest’s burn rates , 2017, Landscape Ecology.

[34]  Martin A. Nuñez,et al.  The emerging science of linked plant-fungal invasions. , 2017, The New phytologist.

[35]  Jin Li,et al.  Assessing the accuracy of predictive models for numerical data: Not r nor r2, why not? Then what? , 2017, PloS one.

[36]  Carsten F. Dormann,et al.  Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure , 2017 .

[37]  S. Oldfield,et al.  GlobalTreeSearch: The first complete global database of tree species and country distributions , 2017 .

[38]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[39]  Filippo Bussotti,et al.  Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.

[40]  Shao-Peng Li,et al.  Different effects of invader–native phylogenetic relatedness on invasion success and impact: a meta-analysis of Darwin's naturalization hypothesis , 2016, Proceedings of the Royal Society B: Biological Sciences.

[41]  J. Olden,et al.  Global threats from invasive alien species in the twenty-first century and national response capacities , 2016, Nature Communications.

[42]  Olaf Conrad,et al.  Climatologies at high resolution for the earth’s land surface areas , 2016, Scientific Data.

[43]  Susanne A. Fritz,et al.  A guide to phylogenetic metrics for conservation, community ecology and macroecology , 2016, Biological reviews of the Cambridge Philosophical Society.

[44]  Steve Weston,et al.  Foreach Parallel Adaptor for the 'parallel' Package , 2015 .

[45]  Q. Guo,et al.  A unified approach for quantifying invasibility and degree of invasion. , 2015, Ecology.

[46]  William D. Pearse,et al.  Pez: Phylogenetics for the Environmental Sciences , 2015, Bioinform..

[47]  Andreas Ziegler,et al.  ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R , 2015, 1508.04409.

[48]  P. Brockhoff,et al.  Tests in Linear Mixed Effects Models , 2015 .

[49]  G. Chi Applied Spatial Data Analysis with R , 2015 .

[50]  Nathan J B Kraft,et al.  Community assembly, coexistence and the environmental filtering metaphor , 2015 .

[51]  Roger Bivand,et al.  Comparing Implementations of Estimation Methods for Spatial Econometrics , 2015 .

[52]  J. Tournadre Anthropogenic pressure on the open ocean: The growth of ship traffic revealed by altimeter data analysis , 2014 .

[53]  T. Münkemüller,et al.  Identifying the signal of environmental filtering and competition in invasion patterns – a contest of approaches from community ecology , 2014 .

[54]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[55]  Wilfried Thuiller,et al.  The influence of interspecific interactions on species range expansion rates , 2014, Ecography.

[56]  Martin A. Nuñez,et al.  Tree invasions: patterns, processes, challenges and opportunities , 2014, Biological Invasions.

[57]  Martin A. Nuñez,et al.  Invasive belowground mutualists of woody plants , 2014, Biological Invasions.

[58]  M. Rejmánek Invasive trees and shrubs: where do they come from and what we should expect in the future? , 2014, Biological Invasions.

[59]  Martin A. Nuñez,et al.  Conflicting values: ecosystem services and invasive tree management , 2014, Biological Invasions.

[60]  I. Boyd,et al.  The Consequence of Tree Pests and Diseases for Ecosystem Services , 2013, Science.

[61]  J. Funk The physiology of invasive plants in low-resource environments , 2013, Conservation physiology.

[62]  Daniel S. Park,et al.  A test of Darwin's naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors , 2013, Proceedings of the National Academy of Sciences.

[63]  Martin A. Nuñez,et al.  Exotic Mammals Disperse Exotic Fungi That Promote Invasion by Exotic Trees , 2013, PloS one.

[64]  A. Stampfli,et al.  Positive diversity-invasibility relationship in species-rich semi-natural grassland at the neighbourhood scale. , 2012, Annals of botany.

[65]  Brendan A. Wintle,et al.  A new method for dealing with residual spatial autocorrelation in species distribution models , 2012 .

[66]  Jesse M. Kalwij,et al.  Review of ‘The Plant List, a working list of all plant species’ , 2012 .

[67]  D. Richardson,et al.  Naturalization of introduced plants: ecological drivers of biogeographical patterns. , 2012, The New phytologist.

[68]  Fiona J. Thomson,et al.  Invasions: the trail behind, the path ahead, and a test of a disturbing idea , 2012 .

[69]  D. Richardson,et al.  Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems , 2011, Global Change Biology.

[70]  D. Richardson,et al.  Trees and shrubs as invasive alien species – a global review , 2011 .

[71]  Luís Silva,et al.  Testing Darwin's naturalization hypothesis in the Azores. , 2011, Ecology letters.

[72]  James Rosindell,et al.  Unified neutral theory of biodiversity and biogeography , 2010, Scholarpedia.

[73]  J. Lamarque,et al.  Global Biodiversity: Indicators of Recent Declines , 2010, Science.

[74]  M. Fischer,et al.  A meta-analysis of trait differences between invasive and non-invasive plant species. , 2010, Ecology letters.

[75]  Petr Pysek,et al.  Planting intensity, residence time, and species traits determine invasion success of alien woody species. , 2009, Ecology.

[76]  H. Mooney,et al.  Invasive species, ecosystem services and human well-being. , 2009, Trends in ecology & evolution.

[77]  I. Kühn,et al.  The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits , 2009 .

[78]  P. Hulme Trade, transport and trouble: managing invasive species pathways in an era of globalization , 2009 .

[79]  C. Nilsson,et al.  Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework , 2009 .

[80]  Richard P Duncan,et al.  Darwin's naturalization conundrum: dissecting taxonomic patterns of species invasions. , 2008, Ecology letters.

[81]  J. Dukes,et al.  Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. , 2007, The New phytologist.

[82]  D. Lodge,et al.  Take a risk: Preferring prevention over control of biological invaders , 2007 .

[83]  David M. Stoms,et al.  Human impacts, plant invasion, and imperiled plant species in California. , 2006, Ecological applications : a publication of the Ecological Society of America.

[84]  D. Richardson,et al.  Plant invasions: merging the concepts of species invasiveness and community invasibility , 2006 .

[85]  Campbell O. Webb,et al.  Exotic taxa less related to native species are more invasive. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[86]  P. Fine,et al.  The invasibility of tropical forests by exotic plants , 2002, Journal of Tropical Ecology.

[87]  David Tilman,et al.  Biodiversity as a barrier to ecological invasion , 2002, Nature.

[88]  Kevin J. Gaston,et al.  Functional diversity (FD), species richness and community composition , 2002 .

[89]  D. Simberloff,et al.  BIOTIC INVASIONS: CAUSES, EPIDEMIOLOGY, GLOBAL CONSEQUENCES, AND CONTROL , 2000 .

[90]  J. Ditomaso Invasive weeds in rangelands: Species, impacts, and management , 2000, Weed Science.

[91]  Jonathan M. Levine,et al.  Elton revisited: a review of evidence linking diversity and invasibility , 1999 .

[92]  James Woodward,et al.  Biological invasions as global environmental change , 1996 .

[93]  Paul A. Keddy,et al.  Assembly and response rules: two goals for predictive community ecology , 1992 .

[94]  R. Macarthur,et al.  The Limiting Similarity, Convergence, and Divergence of Coexisting Species , 1967, The American Naturalist.

[95]  C. Elton The Ecology of Invasions by Animals and Plants , 1960, Springer US.

[96]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[97]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[98]  A. Zeileis,et al.  Beta Regression in R , 2010 .

[99]  Daniel Simberloff,et al.  We can eliminate invasions or live with them. Successful management projects , 2008, Biological Invasions.

[100]  Jeffrey L. Smith,et al.  Osage orange (Maclura pomifera): History and economic uses , 2008, Economic Botany.

[101]  T J Stohlgren,et al.  The invasion paradox: reconciling pattern and process in species invasions. , 2007, Ecology.

[102]  Catherine S. Jarnevich,et al.  Scale and plant invasions: A theory of biotic acceptance , 2006 .

[103]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[104]  Andrea Perlis,et al.  Global forest resources assessment 2000 : main report , 2001 .

[105]  David Tilman,et al.  COMMUNITY INVASIBILITY, RECRUITMENT LIMITATION, AND GRASSLAND BIODIVERSITY , 1997 .

[106]  P. Vitousek,et al.  INTRODUCED SPECIES: A SIGNIFICANT COMPONENT OF HUMAN-CAUSED GLOBAL CHANGE , 1997 .

[107]  C. Elton,et al.  The Ecology of Invasion by Animals and Plants , 1960 .