On distributed equilibrium seeking for generalized convex games

This paper considers a class of generalized convex games where each player is associated with a convex objective function, a private convex inequality constraint and a private convex constraint set. The component functions are potentially non-smooth. The players aim to compute a Nash equilibrium through communicating with neighboring players. We study two distributed computation algorithms and show their convergence properties in the presence of data transmission delays and dynamic changes of network topologies.

[1]  Geoffrey A. Hollinger,et al.  Search and pursuit-evasion in mobile robotics , 2011, Auton. Robots.

[2]  Asuman E. Ozdaglar,et al.  Constrained Consensus and Optimization in Multi-Agent Networks , 2008, IEEE Transactions on Automatic Control.

[3]  A. Arsie,et al.  Efficient routing of multiple vehicles with no communication , 2007, 2007 American Control Conference.

[4]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[5]  J. Goodman Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .

[6]  Eitan Altman,et al.  Multiuser rate-based flow control , 1998, IEEE Trans. Commun..

[7]  Jason R. Marden,et al.  Autonomous Vehicle-Target Assignment: A Game-Theoretical Formulation , 2007 .

[8]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[9]  Sonia Martínez,et al.  On Distributed Convex Optimization Under Inequality and Equality Constraints , 2010, IEEE Transactions on Automatic Control.

[10]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[11]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[12]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[13]  Asuman E. Ozdaglar,et al.  Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods , 2008, SIAM J. Optim..

[14]  Frank Allgöwer,et al.  Delay robustness in consensus problems , 2010, Autom..

[15]  Convex Optimization in Signal Processing and Communications , 2010 .

[16]  Jason R. Marden,et al.  Designing games for distributed optimization , 2011, IEEE Conference on Decision and Control and European Control Conference.

[17]  Panos M. Pardalos,et al.  Convex optimization theory , 2010, Optim. Methods Softw..

[18]  Prashant G. Mehta,et al.  Nash Equilibrium Problems With Scaled Congestion Costs and Shared Constraints , 2011, IEEE Transactions on Automatic Control.

[19]  Sonia Martínez,et al.  An Approximate Dual Subgradient Algorithm for Multi-Agent Non-Convex Optimization , 2010, IEEE Transactions on Automatic Control.

[20]  Robert D. Nowak,et al.  Quantized incremental algorithms for distributed optimization , 2005, IEEE Journal on Selected Areas in Communications.

[21]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[22]  Francisco Facchinei,et al.  Distributed Power Allocation With Rate Constraints in Gaussian Parallel Interference Channels , 2007, IEEE Transactions on Information Theory.

[23]  E. Dockner,et al.  Differential Games in Economics and Management Science: Basic concepts of game theory , 2000 .

[24]  Miroslav Krstic,et al.  Nash Equilibrium Seeking in Noncooperative Games , 2012, IEEE Transactions on Automatic Control.

[25]  Milos S. Stankovic,et al.  Distributed Seeking of Nash Equilibria With Applications to Mobile Sensor Networks , 2012, IEEE Transactions on Automatic Control.

[26]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..