The concepts of ‘sameness’ and ‘difference’ in an insect

[1]  C. Greene,et al.  Organic Agriculture Gaining Ground , 2003 .

[2]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[3]  R. Menzel,et al.  Cognitive architecture of a mini-brain: the honeybee , 2001, Trends in Cognitive Sciences.

[4]  Youyong Zhu,et al.  Genetic diversity and disease control in rice , 2000, Nature.

[5]  John P. Reganold,et al.  Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State , 2000 .

[6]  Z. Naveh The Total Human Ecosystem: Integrating Ecology and Economics , 2000 .

[7]  G. Barrett,et al.  The Twenty-First Century: The World at Carrying Capacity , 2000 .

[8]  Anthony Trewavas,et al.  Much food, many problems , 1999, Nature.

[9]  M. V. Srinivasan,et al.  Honeybee Memory: Navigation by Associative Grouping and Recall of Visual Stimuli , 1999, Neurobiology of Learning and Memory.

[10]  James H. Brown,et al.  A general model for the structure and allometry of plant vascular systems , 1999, Nature.

[11]  D. Tilman,et al.  Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Fischer,et al.  Modelling the competitiveness of clonal plants by complementary analytical and simulation approaches , 1999 .

[13]  Benton,et al.  Criticality and scaling in evolutionary ecology. , 1997, Trends in ecology & evolution.

[14]  S. W. Zhang,et al.  Honeybees link sights to smells , 1998, Nature.

[15]  L. Drinkwater,et al.  Legume-based cropping systems have reduced carbon and nitrogen losses , 1998, Nature.

[16]  T. S. Collett,et al.  Places and patterns — a study of context learning in honeybees , 1997, Journal of Comparative Physiology A.

[17]  W. Parton,et al.  Agricultural intensification and ecosystem properties. , 1997, Science.

[18]  S. Hubbell,et al.  A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs , 1997, Coral Reefs.

[19]  M. Hammer The neural basis of associative reward learning in honeybees , 1997, Trends in Neurosciences.

[20]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[21]  R Goodland «Environmental sustainability: universal, and non-negotiable» , 1997 .

[22]  S. Sansavini Integrated fruit production in Europe: research and strategies for a sustainable industry , 1997 .

[23]  R. Menzel,et al.  Symmetry perception in an insect , 1996, Nature.

[24]  R. Menzel,et al.  Learning and memory in honeybees: from behavior to neural substrates. , 1996, Annual review of neuroscience.

[25]  George Adrian Horridge,et al.  Pattern vision in honeybees (Apis mellifera): Flower-like patterns with no predominant orientation , 1995 .

[26]  H. Hinman,et al.  Economic analysis of apple orchard management systems with three varieties in Central Washington. , 1995 .

[27]  R. Durrett,et al.  The Importance of Being Discrete (and Spatial) , 1994 .

[28]  M. Pritts,et al.  Are Modern Fruit Production Systems Sustainable , 1993 .

[29]  M. Fox Sustainable agriculture. , 1993, Journal of the American Veterinary Medical Association.

[30]  M. Loreau Species abundance patterns and the structure of ground-beetle communities , 1991 .

[31]  G. Davey Ecological Learning Theory , 1989 .

[32]  D. Premack,et al.  Spontaneous transfer of matching by infant chimpanzees (Pan troglodytes). , 1988, Journal of experimental psychology. Animal behavior processes.

[33]  R. May,et al.  Population dynamics and plant community structure: Competition between annuals and perrenials , 1987 .

[34]  Stephen W. Pacala,et al.  Neighborhood Models of Plant Population Dynamics. 4. Single-Species and Multispecies Models of Annuals with Dormant Seeds , 1986, The American Naturalist.

[35]  Robert A. Boakes,et al.  Transfer of Relational Rules in Matching and Oddity Learning by Pigeons and Corvids , 1985 .

[36]  M R D'Amato,et al.  Extent and limits of the matching concept in monkeys (Cebus apella). , 1985, Journal of experimental psychology. Animal behavior processes.

[37]  Celia M. Lombardi,et al.  Oddity of visual patterns conceptualized by pigeons , 1984 .

[38]  T. Pearson,et al.  Objective selection of sensitive species indicative of pollution-induced change in benthic communities. 2. Data analyses , 1983 .

[39]  K. I. Ugland,et al.  Lognormal Distributions and the Concept of Community Equilibrium , 1982 .

[40]  G. Sugihara Minimal Community Structure: An Explanation of Species Abundance Patterns , 1980, The American Naturalist.

[41]  P. W. Holmes Transfer of matching performance in pigeons. , 1979, Journal of the experimental analysis of behavior.

[42]  T. Zentall,et al.  Same/different concept learning in the pigeon: the effect of negative instances and prior adaptation to transfer stimuli. , 1978, Journal of the experimental analysis of behavior.

[43]  L M Herman,et al.  Auditory delayed matching in the bottlenose dolphin. , 1974, Journal of the experimental analysis of behavior.

[44]  Roger K. Thomas,et al.  A comparison ofCebus albifrons andSaimiri sciureus on oddity performance , 1973 .

[45]  P. N. Strong,et al.  Comparative studies in simple oddity learning: I. Cats, raccoons, monkeys, and chimpanzees , 1966 .

[46]  R. Macarthur,et al.  On the Relative Abundance of Species , 1960, The American Naturalist.

[47]  H. Harlow,et al.  Analysis of oddity learning by rhesus monkeys. , 1955, Journal of comparative and physiological psychology.

[48]  C. G. BUTLER,et al.  The Honeybee , 1942, Nature.

[49]  Snezana Lawrence October , 1855, The Hospital.