Quantify the Unstable

The Mahler measure, a notion often appearing in the number theory and dynamic system literature, provides a way to quantify the instability in a linear discrete-time system.

[1]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[2]  K. Mahler An application of Jensen's formula to polynomials , 1960 .

[3]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[4]  W. Wonham On pole assignment in multi-input controllable linear systems , 1967 .

[5]  R. Bowen Entropy for group endomorphisms and homogeneous spaces , 1971 .

[6]  A. Durand On Mahler’s measure of a polynomial , 1981 .

[7]  Shinji Hara,et al.  Properties of sensitivity and complementary sensitivity functions in single-input single-output digital control systems , 1988 .

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[10]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[11]  Graham Everest,et al.  HEIGHTS OF POLYNOMIALS AND ENTROPY IN ALGEBRAIC DYNAMICS (Universitext) By G RAHAM E VEREST and T HOMAS W ARD : 212 pp., £35.00, ISBN 1 85233 125 9 (Springer, 1999). , 2000 .

[12]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[13]  Robert E. Skelton,et al.  Mean-square small gain theorem for stochastic control: discrete-time case , 2002, IEEE Trans. Autom. Control..

[14]  G. Stein,et al.  Respect the unstable , 2003 .

[15]  Richard H. Middleton,et al.  Feedback stabilization over signal-to-noise ratio constrained channels , 2007, Proceedings of the 2004 American Control Conference.

[16]  Lihua Xie,et al.  The sector bound approach to quantized feedback control , 2005, IEEE Transactions on Automatic Control.

[17]  Nicola Elia,et al.  Remote stabilization over fading channels , 2005, Syst. Control. Lett..

[18]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[19]  Roy L. Adler,et al.  Topological entropy , 2008, Scholarpedia.

[20]  Guoxiang Gu,et al.  Stabilization of networked multi-input systems with channel resource allocation , 2008, 2008 10th International Conference on Control, Automation, Robotics and Vision.

[21]  Hui Sun,et al.  Topological entropy of linear systems and its application to optimal control , 2008 .

[22]  Nan Xiao,et al.  Mean square stabilization of multi-input systems over stochastic multiplicative channels , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[23]  Richard M. Murray,et al.  Introduction to Networked Control Systems , 2018, Optimal Networked Control Systems with MATLAB.