Low latency output feedback model predictive control for constrained linear systems

Low latency control refers to control with a minimal delay between sensing and actuation. For constrained linear systems we propose a novel concept to achieve low latency control for output feedback controllers, which consist of an observer and a predictive controller. Low latency is achieved by splitting the computation of the predictive control law into two parts: First based on the last state estimate a set of control laws is computed, which are parameterized by the yet unknown, future measurement. Once the measurement is available, the controller selects the correct control law and computes the input. We discuss implementation aspects such as the computation of the control laws and the input-to-state stability of the arising closed loop system. An example illustrates the results.

[1]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[2]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[3]  Martin Mönnigmann,et al.  Optimal and suboptimal event-triggering in linear model predictive control , 2015, 2015 European Control Conference (ECC).

[4]  David Q. Mayne,et al.  Robust and stochastic model predictive control: Are we going in the right direction? , 2016, Annu. Rev. Control..

[5]  Graham C. Goodwin,et al.  Robust model predictive control: reflections and opportunities , 2014 .

[6]  Stephen J. Wright,et al.  Fast, large-scale model predictive control by partial enumeration , 2007, Autom..

[7]  James B. Rawlings,et al.  Postface to “ Model Predictive Control : Theory and Design ” , 2012 .

[8]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems: Time varying case , 2009, Autom..

[9]  Rolf Findeisen,et al.  On efficient predictive control of linear systems subject to quadratic constraints using condensed, structure-exploiting interior point methods , 2013, 2013 European Control Conference (ECC).

[10]  Rolf Findeisen,et al.  Output feedback MPC with send-on-delta measurements for uncertain systems , 2016 .

[11]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[12]  Hans Joachim Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[13]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[14]  Alberto Bemporad,et al.  An Accelerated Dual Gradient-Projection Algorithm for Embedded Linear Model Predictive Control , 2014, IEEE Transactions on Automatic Control.

[15]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[16]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[17]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[18]  Mato Baotic,et al.  On the computation of linear model predictive control laws , 2010, Autom..

[19]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[20]  Rolf Findeisen,et al.  Implementation aspects of model predictive control for embedded systems , 2012, 2012 American Control Conference (ACC).

[21]  Frank Allgöwer,et al.  State and Output Feedback Nonlinear Model Predictive Control: An Overview , 2003, Eur. J. Control.

[22]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[23]  Rolf Findeisen,et al.  Fast predictive control of linear systems combining Nesterov's gradient method and the method of multipliers , 2011, IEEE Conference on Decision and Control and European Control Conference.

[24]  Gabriele Pannocchia,et al.  Offset-free tracking MPC: A tutorial review and comparison of different formulations , 2015, 2015 European Control Conference (ECC).

[25]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[26]  D. Limón,et al.  Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control , 2009 .

[27]  Daniel E. Quevedo,et al.  Predictive control, embedded cyberphysical systems and systems of systems - A perspective , 2016, Annu. Rev. Control..

[28]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[29]  Rolf Findeisen,et al.  Robust output feedback predictive control with self-triggered measurements , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[30]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[31]  Rolf Findeisen,et al.  On MPC based trajectory tracking , 2014, 2014 European Control Conference (ECC).

[32]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[33]  Nadine Gottschalk,et al.  Computer Controlled Systems Theory And Design , 2016 .

[34]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[35]  R. Findeisen,et al.  Robust Output Feedback Model Predictive Control Using Reduced Order Models , 2015 .

[36]  Rolf Findeisen,et al.  Robust output feedback MPC for uncertain linear systems with reduced conservatism , 2017 .

[37]  Rolf Findeisen,et al.  Sampled-data, output feedback predictive control of uncertain, nonlinear systems , 2016 .

[38]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[39]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[40]  Antonio Ferramosca,et al.  Model Predictive Control for changing economic targets , 2012 .