Semantic Segmentation on LiDAR Point Cloud in Urban Area using Deep Learning

Semantic segmentation in an urban area can be utilized to differentiate between various objects on LiDAR point cloud data. This research aims to distinguish between buildings object and non-buildings object by performing semantic segmentation on the LiDAR point cloud data. A deep learning method has been proven to achieve state-of-art performance on semantic segmentation task. Dynamic Graph Convolutional Neural Network (DGCNN) is used to perform semantic segmentation in this research. Two datasets from two different regions are used to perform semantic segmentation. The first dataset is retrieved from Margonda region in Depok, Indonesia, and the second dataset is retrieved from Dublin region in Ireland. The experiment shows that the deep learning method is capable of doing semantic segmentation on LiDAR point cloud data. When tested the first dataset achieved accuracy of 86,3% and mean IoU of 70,3%. The second dataset achieved accuracy of 81,9% and mean IoU of 65,2%.

[1]  Bastian Leibe,et al.  Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[2]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[4]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[5]  Silvio Savarese,et al.  3D Semantic Parsing of Large-Scale Indoor Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[8]  Patrick Rives,et al.  A New Metric for Evaluating Semantic Segmentation: Leveraging Global and Contour Accuracy , 2017, 2018 IEEE Intelligent Vehicles Symposium (IV).

[9]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..