Constrained intermittent model predictive control

The generalised hold formulation of intermittent control is re-examined and shown to have some useful theoretical and practical properties. It is shown that this provides a foundation for constrained model predictive control in an intermittent context. The method is illustrated using an example and verified with experimental results.

[1]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[2]  Peter J. Gawthrop,et al.  Open-loop intermittent feedback control: practical continuous-time GPC , 1999 .

[3]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[4]  Alberto Bemporad,et al.  Model predictive control of magnetically actuated mass spring dampers for automotive applications , 2007, Int. J. Control.

[5]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[6]  O. Jacobs,et al.  Introduction to Control Theory , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Jean-Philippe Chancelier,et al.  Modeling and Simulation in Scilab/Scicos , 2006 .

[8]  Ian David Loram,et al.  The frequency of human, manual adjustments in balancing an inverted pendulum is constrained by intrinsic physiological factors , 2006, The Journal of physiology.

[9]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[10]  Peter J. Gawthrop,et al.  Intermittent model predictive control , 2007 .

[11]  H.E. Tseng,et al.  Hybrid Model Predictive Control Application Towards Optimal Semi-Active Suspension , 2005, Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. ISIE 2005..

[12]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[13]  Hartmut Bossel,et al.  Modeling and simulation , 1994 .

[14]  Roberto Bucher,et al.  Rapid controller prototyping with Matlab/Simulink and Linux , 2006 .

[15]  Liuping Wang Continuous time model predictive control design using orthonormal functions , 2001 .

[16]  P. E. Wellstead,et al.  Introduction to physical system modelling , 1979 .

[17]  Peter J. Gawthrop Intermittent constrained predictive control of mechanical systems , 2004 .

[18]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[19]  Peter J. Gawthrop,et al.  Constrained predictive pole-placement control with linear models , 2006, Autom..

[20]  Peter J. Gawthrop,et al.  Intermittent Predictive Control of an Inverted Pendulum , 2006 .

[21]  M. Naumović Sampling in Digital Signal Processing and Control , 2001 .

[22]  Peter J. Gawthrop,et al.  Predictive pole-placement control with linear models , 2002, Autom..

[23]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[24]  Jozsef Bokor,et al.  Approximate Identification in Laguerre and Kautz Bases , 1998, Autom..

[25]  Thomas Kailath,et al.  Linear Systems , 1980 .

[26]  Graham C. Goodwin,et al.  Frequency domain sensitivity functions for continuous time systems under sampled data control , 1994, Autom..

[27]  Graham C. Goodwin,et al.  Sampling in Digital Sig-nal Processing and Control , 1996 .

[28]  John W. Eaton,et al.  Gnu Octave Manual , 2002 .

[29]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .