From Mirror Writing to Mirror Neurons

The article offers a personal perspective on Simulation of Animal Behavior, starting with the inspiration of Norbert Wiener's 1948 Cybernetics for the publication of Brains, Machines, and Mathematics in 1964. This led to a range of simulations of the brains and behaviors of frogs (Rana computatrix), rats, monkeys and humans. Such work is paralleled by work in biologically-inspired robots, traceable back to Grey Walter's Machina speculatrix of 1953. Recent work includes detailed modeling of hand control, mirror neurons and sequencing as part of a program to determine "What the Macaque Brain Tells the Human Mind". The Mirror System Hypothesis for the evolution of the language-ready brain suggests a path for evolution of brain mechanisms atop the mirror system for grasping, with new processes supporting simple imitation, complex imitation, gesture, pantomime and finally protosign and protospeech. It is argued that this progression suggests the "dead end of the simple model" if we are to fully explore the lessons of Simulation of Animal Behavior for computational neuroscience and biologically-inspired robotics.

[1]  K. Emmorey Language, Cognition, and the Brain: Insights From Sign Language Research , 2001 .

[2]  Michael A. Arbib,et al.  Vision and Action in the Language-Ready Brain: From Mirror Neurons to SemRep , 2007, BVAI.

[3]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[4]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[5]  G. Miller,et al.  Plans and the structure of behavior , 1960 .

[6]  M. Arbib From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics , 2005, Behavioral and Brain Sciences.

[7]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[8]  Michael A. Arbib,et al.  Extending the mirror neuron system model, I , 2007, Biological Cybernetics.

[9]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[10]  M. Arbib Aphasia, apraxia and the evolution of the language-ready brain , 2006 .

[11]  M. Arbib,et al.  Opposition Space as a Structuring Concept for the Analysis of Skilled Hand Movements , 1986 .

[12]  Charles L. Weber,et al.  A Mathematical Model , 1987 .

[13]  M. Arbib,et al.  Conceptual models of neural organization. , 1974, Neurosciences Research Program bulletin.

[14]  G. Rizzolatti,et al.  Premotor cortex and the recognition of motor actions. , 1996, Brain research. Cognitive brain research.

[15]  M. A. Arbib,et al.  Models of Trajectory Formation and Temporal Interaction of Reach and Grasp. , 1993, Journal of motor behavior.

[16]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[17]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[18]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[19]  M. Arbib,et al.  Neurolinguistics must be computational , 1979 .

[20]  D. Ingle Visual Releasers of Prey-Catching Behavior in Frogs and Toads , 1968 .

[21]  M. Arbib,et al.  Tool use and the distalization of the end-effector , 2009, Psychological research.

[22]  Michael A. Arbib Turing Machines, Finite Automata and Neural Nets , 1961, JACM.

[23]  Ronald C. Arkin,et al.  Neuroscience in Motion: The Application of Schema Theory to Mobile Robotics , 1989 .

[24]  D. Poeppel,et al.  Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language , 2004, Cognition.

[25]  M. Arbib Brains, Machines, and Mathematics , 1987, Springer US.

[26]  P H GREENE On looking for neural networks and "cell assemblies" that underlie behavior. I. A mathematical model. , 1962, The Bulletin of mathematical biophysics.

[27]  Scott T. Grafton,et al.  Localization of grasp representations in humans by positron emission tomography , 1996, Experimental Brain Research.

[28]  Michael A. Arbib,et al.  Schema design and implementation of the grasp-related mirror neuron system , 2002, Biological Cybernetics.

[29]  David Kemmerer,et al.  Action to Language via the Mirror Neuron System: Action verbs, argument structure constructions, and the mirror neuron system , 2006 .

[30]  W. Walter The Living Brain , 1963 .

[31]  Michael A. Arbib,et al.  Affordances. Motivations, and the World Graph Theory , 1998, Adapt. Behav..

[32]  Michael A. Arbib,et al.  The metaphorical brain : an introduction to cybernetics as artificial intelligence and brain theory , 1972 .

[33]  H. Heuer,et al.  Generation and modulation of action patterns , 1986 .

[34]  Benjamin K. Bergen,et al.  Embodied Construction Grammar in Simulation-Based Language Understanding , 2003 .

[35]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[36]  Michael A. Arbib,et al.  Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons , 2010, Biological Cybernetics.

[37]  Michael A. Arbib,et al.  Action to Language via the Mirror Neuron System: Attention and the minimal subscene , 2006 .

[38]  Michael A. Arbib,et al.  From Schema Theory To Language , 1987 .

[39]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[40]  George Houghton,et al.  Parallel Models of Serial Behaviour: Lashley Revisited , 1995 .

[41]  Michael A. Arbib,et al.  Perceptual Structures and Distributed Motor Control , 1981 .

[42]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[43]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[44]  J. Ewert,et al.  Visuomotor Coordination: Amphibians, Comparisons, Models, and Robots , 1989 .

[45]  Donald H. House,et al.  Depth Perception in Frogs and Toads , 1989 .

[46]  Arthur L. Samuel,et al.  Some studies in machine learning using the game of checkers , 2000, IBM J. Res. Dev..

[47]  Ulrich Furbach KI 2005: Advances in Artificial Intelligence , 2005 .

[48]  Daniel Bullock,et al.  Learning and production of movement sequences: behavioral, neurophysiological, and modeling perspectives. , 2004, Human movement science.

[49]  M. Arbib,et al.  Multiple representations of space underlying behavior , 1982, Behavioral and Brain Sciences.

[50]  Michael A. Arbib,et al.  Describing visual scenes: Towards a neurolinguistics based on construction grammar , 2008, Brain Research.

[51]  Michael A. Arbib,et al.  Modeling the dishabituation hierarchy: The role of the primordial hippocampus , 1992, Biological Cybernetics.

[52]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[53]  Francesco Ventriglia,et al.  Advances in Brain, Vision, and Artificial Intelligence, Second International Symposium, BVAI 2007, Naples, Italy, October 10-12, 2007, Proceedings , 2007, BVAI.

[54]  Michael A. Arbib,et al.  Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture , 2005, Biological Cybernetics.

[55]  Michael A. Arbib,et al.  Modeling parietal-premotor interactions in primate control of grasping , 1998, Neural Networks.

[56]  Parvati Dev,et al.  Perception of Depth Surfaces in Random-Dot Stereograms: A Neural Model , 1975, Int. J. Man Mach. Stud..

[57]  W. Pitts,et al.  How we know universals; the perception of auditory and visual forms. , 1947, The Bulletin of mathematical biophysics.

[58]  G. Miller,et al.  Plans and the structure of behavior , 1960 .

[59]  Donald H. House Depth Perception in Frogs and Toads: A Study in Neural Computing , 1989 .

[60]  D. H. Hubel,et al.  RECEPTIVE FIELDS, BINOCULAR AND FUNCTIONAL ARCHITECTURE IN THE CAT’S VISUAL CORTEX , 1962 .

[61]  Michael A. Arbib,et al.  The construction of reality , 1986 .

[62]  M. Arbib,et al.  A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads , 2004, Biological Cybernetics.

[63]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[64]  Bruce A. Draper,et al.  The schema system , 1988, International Journal of Computer Vision.

[65]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[66]  Luc Steels,et al.  Hierarchy in Fluid Construction Grammars , 2005, KI.

[67]  M. Arbib Action to language via the mirror neuron system , 2006 .

[68]  T Matsuzawa,et al.  Factors influencing imitation of manipulatory actions in chimpanzees (Pan troglodytes). , 1999, Journal of comparative psychology.

[69]  Michael A. Arbib,et al.  Language evolution: neural homologies and neuroinformatics , 2003, Neural Networks.

[70]  A. Goodwin,et al.  Hand function and the neocortex , 1985 .

[71]  Friedrich T. Sommer,et al.  Exploratory analysis and data modeling in functional neuroimaging , 2003 .

[72]  Scott T. Grafton,et al.  Synthetic PET imaging for grasping: from primate Neurophysiology to human behavior , 2003 .

[73]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[74]  G. Rizzolatti,et al.  Action recognition in the premotor cortex. , 1996, Brain : a journal of neurology.

[75]  Scott T. Grafton,et al.  Synthetic PET: Analyzing large‐scale properties of neural networks , 1994 .