The scenario approach to stochastic optimization

Many design problems in control, telecommunications and signal processing can be expressed as optimization problems. Many of these problems are stochastic in the sense that they are parameterized by random/uncertain variables. The goal of the current paper is to review recent research on stochastic optimization. We specifically address the issue of scenario generation which lies at the heart of the solution to such problems.

[1]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[2]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[3]  Basil Kouvaritakis,et al.  Efficient robust predictive control , 2000, IEEE Trans. Autom. Control..

[4]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[5]  Thomas E. Nichols Tools for statistical inference in functional & structural brain imaging , 2009 .

[6]  Graham C. Goodwin,et al.  Constrained Control and Estimation , 2005 .

[7]  Hong Chen,et al.  An improved moving horizon control scheme through Lagrange duality , 2006 .

[8]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[9]  J. Primbs,et al.  A fast algorithm for stochastic model predictive control with probabilistic constraints , 2010, Proceedings of the 2010 American Control Conference.

[10]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[11]  Maria Prandini,et al.  The scenario approach for systems and control design , 2009, Annu. Rev. Control..

[12]  Stephen P. Boyd,et al.  Nonlinear Q-Design for Convex Stochastic Control , 2009, IEEE Transactions on Automatic Control.

[13]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[15]  Graham C. Goodwin,et al.  Design of scenarios for constrained stochastic optimization via vector quantization , 2012, 2012 American Control Conference (ACC).

[16]  Johan A. K. Suykens,et al.  A SIMPLE ALGORITHM FOR ROBUST MPC , 2005 .

[17]  Basil Kouvaritakis,et al.  Robust receding horizon predictive control for systems with uncertain dynamics and input saturation , 2000, Autom..

[18]  Graham C. Goodwin,et al.  Robust output-feedback model predictive control for systems with unstructured uncertainty , 2008, Autom..

[19]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[20]  George Birtwistle The New Quantum Mechanics: THE DIRAC MATRIX TRANSFORMATION THEORY; DEDUCTION OF SCHRÖDINGER'S WAVE EQUATION; GENERALISED FORM OF THE WAVE EQUATION; PHYSICAL INTERPRETATION OF q -NUMBERS; INTRODUCTION OF PROBABILITIES; APPLICATION TO COLLISION PROBLEMS , 2009 .

[21]  Marco C. Campi,et al.  Classification with guaranteed probability of error , 2010, Machine Learning.

[22]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Xiaohong Jiang,et al.  Opportunistic link overbooking for resource efficiency under per-flow service guarantee , 2010, IEEE Transactions on Communications.

[24]  Graham C. Goodwin,et al.  Receding horizon control applied to optimal mine planning , 2006, Autom..

[25]  Giuseppe Carlo Calafiore,et al.  Interval predictor models: Identification and reliability , 2009, Autom..

[26]  Antti Toskala,et al.  Wcdma for Umts , 2002 .

[27]  P.J. Goulart,et al.  A convex formulation for receding horizon control of constrained discrete-time systems with guaranteed l2 gain , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[28]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[29]  Graham C. Goodwin,et al.  Robust Output-Feedback MPC With Integral Action , 2010, IEEE Transactions on Automatic Control.

[30]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..