TerminatorBot: a novel robot with dual-use mechanism for locomotion and manipulation

As part of a massively distributed heterogeneous system, TerminatorBot, a novel, centimeter-scale crawling robot, has been developed to address applications in surveillance, search-and-rescue, and planetary exploration. Its two three-degree-of-freedom arms, which stow inside the cylindrical body for ballistic deployment and protected transport, comprise a dual-use mechanism for manipulation and locomotion. The intended applications require a small, rugged, and lightweight robot, hence, the desire for dual use. TerminatorBot's unique mechanism provides mobility and fine manipulation on a scale currently unavailable. To facilitate manipulation, we have also developed a specialized force/torque sensor. This new sensor design has a biased distribution of flexures, which equalizes force and torque sensitivities at the operational point. This work describes the mechanism and design of TerminatorBot, the specialized force/torque sensor, and the mechanism-specific gaits.

[1]  Manfred Hiller,et al.  Modeling, simulation, and model-based control of the walking machine ALDURO , 2000 .

[2]  H. Benjamin Brown,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. RHex: A Biologically Inspired Hexapod Runner ∗ , 2022 .

[3]  Tucker R. Balch,et al.  Behavior-based control of a non-holonomic robot in pushing tasks , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[4]  Shigeo Hirose,et al.  A Study of Design and Control of a Quadruped Walking Vehicle , 1984 .

[5]  Oussama Khatib,et al.  Design and development of high-performance torque-controlled joints , 1995, IEEE Trans. Robotics Autom..

[6]  Jun Nakanishi,et al.  A brachiating robot controller , 2000, IEEE Trans. Robotics Autom..

[7]  Bradley J. Nelson,et al.  Using orthogonal visual servoing errors for classifying terrain , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[8]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[9]  Shigeo Hirose,et al.  Design of SMC rover: development and basic experiments of arm equipped single wheel rover , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[10]  Phillip A. Laplante,et al.  Real-Time Systems Design and Analysis , 1992 .

[11]  Masahiro Fujita,et al.  Evolving robust gaits with AIBO , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Pradeep K. Khosla,et al.  Vision resolvability for visually servoed manipulation , 1996 .

[13]  Gen Endo,et al.  Study on Roller-Walker. Multi-mode Steering Control and Self-contained Locomotion. , 2000 .

[14]  Daniel A. Kingsley,et al.  A Cockroach Inspired Robot With Artificial Muscles , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  I. Shimoyama,et al.  Dynamic Walk of a Biped , 1984 .

[16]  Nikolaos Papanikolopoulos,et al.  Active video system for a miniature reconnaissance robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Maja J. Mataric,et al.  Pusher-watcher: an approach to fault-tolerant tightly-coupled robot coordination , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Tatsuo Arai,et al.  Development of multi-limb robot with omnidirectional manipulability and mobility , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[20]  W. Oechel,et al.  Automatic design and manufacture of robotic lifeforms , 2022 .

[21]  Fumihito Arai,et al.  Swing and locomotion control for a two-link brachiation robot , 1993, IEEE Control Systems.

[22]  Rodney A. Brooks,et al.  A robot that walks; emergent behaviors from a carefully evolved network , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[23]  Atsuo Takanishi,et al.  REALIZATION OF THE QUASI DYNAMIC WALKING BY THE BIPED WALKING MACHINE. , 1981 .

[24]  Pradeep K. Khosla,et al.  Final Draft the Chimera Methodology : Designing Dynamically Reconfigurable and Reusable Real-time Software Using Port-based Objects 1 , 1996 .

[25]  Yangsheng Xu,et al.  A separable combination of wheeled rover and arm mechanism: (DM)/sup 2/ , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[26]  Hiroshi Kimura,et al.  Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator , 1999, Auton. Robots.

[27]  Oussama Khatib,et al.  Mobile manipulation: The robotic assistant , 1999, Robotics Auton. Syst..

[28]  Noriho Koyachi,et al.  Development of a leg-wheel hybrid mobile robot and its step-passing algorithm , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[29]  Tatsuo Arai,et al.  Integrated arm and leg mechanism and its kinematic analysis , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[30]  Hong Zhang,et al.  The use of perceptual cues in multi-robot box-pushing , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[31]  Mark Yim,et al.  New locomotion gaits , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[32]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[33]  Saifallah Benjaafar,et al.  A miniature robotic system for reconnaissance and surveillance , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[34]  Takeo Kanade,et al.  Control system of the self-mobile space manipulator , 1994, IEEE Trans. Control. Syst. Technol..

[35]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[36]  George A. Bekey,et al.  Gait Adaptation in a Quadruped Robot , 2002, Auton. Robots.

[37]  Bruce H. Krogh,et al.  Path planning for mobile manipulators for multiple task execution , 1991, IEEE Trans. Robotics Autom..

[38]  Masahiro Fujita,et al.  Digital creatures for future entertainment robotics , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[39]  William Whittaker,et al.  Limbless locomotion: learning to crawl with a snake robot , 1997 .

[40]  Siddhartha S. Srinivasa,et al.  Experiments with nonholonomic manipulation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[41]  W. D. Morse,et al.  An Overview of the Accident Response Mobile Manipulation System (ARMMS) , 1994 .

[42]  Tatsuo Arai,et al.  Control of walk and manipulation by a hexapod with integrated limb mechanism: MELMANTIS-1 , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[43]  V. S. Gurfinkel,et al.  Walking robot with supervisory control , 1981 .

[44]  Timothy Ohm,et al.  The JPL Serpentine Robot: a 12-DOF system for inspection , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[45]  KimuraHiroshi,et al.  Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator , 1999 .

[46]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[47]  Jessica K. Hodgins,et al.  Dynamically Stable Legged Locomotion , 1983 .

[48]  Mark E. Nelson,et al.  Architectures for a biomimetic hexapod robot , 2000, Robotics Auton. Syst..

[49]  Hidekazu Nishimura Motion Control for Three-Link Brachiation Robot by Using Final-State Control with Error Learning , 1998 .

[50]  Randall D. Beer,et al.  A miniature hybrid robot propelled by legs , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[51]  Pradeep K. Khosla,et al.  The Chimera II real-time operating system for advanced sensor-based control applications , 1992, IEEE Trans. Syst. Man Cybern..

[52]  Hiroki Okubo,et al.  Motion control of leg-wheel robot for an unexplored outdoor environment , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[53]  Dinesh K. Pai,et al.  A mobile manipulator , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).