Bayesian Robot Programming
暂无分享,去创建一个
[1] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[2] J. A. Robinson,et al. Logic, form and function , 1979 .
[3] E. Jaynes. On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.
[4] Russell H. Taylor,et al. Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .
[5] C. R. Smith,et al. Maximum-Entropy and Bayesian Methods in Inverse Problems , 1985 .
[6] A. Tarantola. Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .
[7] David J. Spiegelhalter,et al. Local computations with probabilities on graphical structures and their application to expert systems , 1990 .
[8] C. Ray Smith,et al. Maximum-entropy and Bayesian methods in science and engineering , 1988 .
[9] Marvin H. J. Guber. Bayesian Spectrum Analysis and Parameter Estimation , 1988 .
[10] Bruce Randall Donald,et al. A Geometric Approach to Error Detection and Recovery for Robot Motion Planning with Uncertainty , 1987, Artif. Intell..
[11] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[12] Claudine Robert. AN ENTROPY CONCENTRATION THEOREM: APPLICATIONS IN ARTIFICIAL INTELLIGENCE AND DESCRIPTIVE STATISTICS , 1990 .
[13] Gregory F. Cooper,et al. The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..
[14] Robert A. Jacobs,et al. Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.
[15] Leslie Pack Kaelbling,et al. Partially Observable Markov Decision Processes for Artificial Intelligence , 1995, KI.
[16] Eric Dedieu,et al. La représentation contingente : vers une réconciliation des approches fonctionnelles et structurelles de la robotique autonome. (Contingent representation : toward a reconciliation of functional and structural approaches to robot autonomy) , 1995 .
[17] Simon Kasif,et al. Logarithmic-Time Updates and Queries in Probabilistic Networks , 1995, UAI.
[18] Michael I. Jordan,et al. Mean Field Theory for Sigmoid Belief Networks , 1996, J. Artif. Intell. Res..
[19] Nevin Lianwen Zhang,et al. Exploiting Causal Independence in Bayesian Network Inference , 1996, J. Artif. Intell. Res..
[20] Hua Lee,et al. Maximum Entropy and Bayesian Methods. , 1996 .
[21] Joseph Y. Halpern. A Counterexample to Theorems of Cox and Fine , 1996, AAAI/IAAI, Vol. 2.
[22] Leslie Pack Kaelbling,et al. Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.
[23] Gregory M. Provan,et al. Query DAGs: A practical paradigm for implementing belief-network inference , 1996, UAI.
[24] Kurt Konolige,et al. Improved Occupancy Grids for Map Building , 1997, Auton. Robots.
[25] Avi Pfeffer,et al. Object-Oriented Bayesian Networks , 1997, UAI.
[26] Stuart J. Russell,et al. Reinforcement Learning with Hierarchies of Machines , 1997, NIPS.
[27] Ronen I. Brafman,et al. Applications of a logic of knowledge to motion planning under uncertainty , 1997, JACM.
[28] Leslie Pack Kaelbling,et al. Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..
[29] Wolfram Burgard,et al. A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.
[30] M. C. Garrido,et al. Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians , 1998, J. Artif. Intell. Res..
[31] Brendan J. Frey,et al. Graphical Models for Machine Learning and Digital Communication , 1998 .
[32] Ève Coste-Manière,et al. The ORCCAD Architecture , 1998, Int. J. Robotics Res..
[33] Stanley A. Schneider,et al. ControlShell: A Software Architecture for Complex Electromechanical Systems , 1998, Int. J. Robotics Res..
[34] Thomas C. Henderson,et al. Instrumented Sensor System Architecture , 1998, Int. J. Robotics Res..
[35] Michael I. Jordan. Graphical Models , 2003 .
[36] Olivier Aycard. Architecture de contrôle pour robot mobile en environnement intérieur structuré , 1998 .
[37] Leslie Pack Kaelbling,et al. Learning models for robot navigation , 1999 .
[38] Joseph Y. Halpern. Cox's Theorem Revisited , 1999, ArXiv.
[39] Julio K. Rosenblatt,et al. Optimal Selection of Uncertain Actions by Maximizing Expected Utility , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).
[40] Michael I. Jordan,et al. Variational Probabilistic Inference and the QMR-DT Network , 2011, J. Artif. Intell. Res..
[41] Kamel Mekhnacha,et al. Méthodes Probabilistes Bayesiennes pour la prise en en compte des incertitudes géométriques : Application à la CAO-Robotique , 1999 .
[42] Julien Diard,et al. Bayesian Learning Experiments with a Khepera Robot , 1999 .
[43] Craig Boutilier,et al. Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.
[44] Julien Diard,et al. Bayesian Programming and Hierarchical Learning in Robotics , 2000 .
[45] Stergios I. Roumeliotis,et al. Collective localization: a distributed Kalman filter approach to localization of groups of mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[46] Sebastian Thrun,et al. Towards programming tools for robots that integrate probabilistic computation and learning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[47] Pierre Bessière,et al. A robotic CAD system using a Bayesian framework , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).
[48] Michael Beetz,et al. Learning structured reactive navigation plans from executing MDP navigation policies , 2001, AGENTS '01.
[49] Pierre Bessière,et al. The design and implementation of a Bayesian CAD modeler for robotic applications , 2001, Adv. Robotics.
[50] Julien Diard,et al. A Bayesian framework for robotic programming , 2001 .
[51] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[52] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[53] L. Kaelbling,et al. Toward Hierachical Decomposition for Planning in Uncertain Environments , 2001 .
[54] Pierre Bessière,et al. Chasing an elusive target with a mobile robot , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).
[55] Thierry Fraichard,et al. Multi-sensor data fusion using Bayesian programming : an automotive application , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.
[56] Julien Diard,et al. La carte bayésienne : un modèle probabiliste hiérarchique pour la navigation en robotique mobile. (The Bayesian map - A hierarchical probabilistic model for mobile robot navigation) , 2003 .
[57] Pierre Bessière,et al. Using Bayesian Programming for multi-sensor multi-target tracking in automotive applications , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).
[58] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[59] Julien Diard,et al. Programmation bayésienne des robots , 2004, Rev. d'Intelligence Artif..
[60] Sebastian Thrun,et al. Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.
[61] M. Tribus,et al. Probability theory: the logic of science , 2003 .
[62] Sunita Sarawagi. Learning with Graphical Models , 2008 .
[63] P. Deb. Finite Mixture Models , 2008 .
[64] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[65] J. A. Robinson,et al. LOGLISP: an alternative to PROLOG , 2013 .