Bayesian Robot Programming

We propose a new method to program robots based on Bayesian inference and learning. It is called BRP for Bayesian Robot Programming. The capacities of this programming method are demonstrated through a succession of increasingly complex experiments. Starting from the learning of simple reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior composition, situation recognition and temporal sequencing. This series of experiments comprises the steps in the incremental development of a complex robot program. The advantages and drawbacks of BRP are discussed along with these different experiments and summed up as a conclusion. These different robotics programs may be seen as an illustration of probabilistic programming applicable whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of possible applications is obviously much broader than robotics.

[1]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[2]  J. A. Robinson,et al.  Logic, form and function , 1979 .

[3]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[4]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[5]  C. R. Smith,et al.  Maximum-Entropy and Bayesian Methods in Inverse Problems , 1985 .

[6]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[7]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[8]  C. Ray Smith,et al.  Maximum-entropy and Bayesian methods in science and engineering , 1988 .

[9]  Marvin H. J. Guber Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[10]  Bruce Randall Donald,et al.  A Geometric Approach to Error Detection and Recovery for Robot Motion Planning with Uncertainty , 1987, Artif. Intell..

[11]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[12]  Claudine Robert AN ENTROPY CONCENTRATION THEOREM: APPLICATIONS IN ARTIFICIAL INTELLIGENCE AND DESCRIPTIVE STATISTICS , 1990 .

[13]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[14]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[15]  Leslie Pack Kaelbling,et al.  Partially Observable Markov Decision Processes for Artificial Intelligence , 1995, KI.

[16]  Eric Dedieu,et al.  La représentation contingente : vers une réconciliation des approches fonctionnelles et structurelles de la robotique autonome. (Contingent representation : toward a reconciliation of functional and structural approaches to robot autonomy) , 1995 .

[17]  Simon Kasif,et al.  Logarithmic-Time Updates and Queries in Probabilistic Networks , 1995, UAI.

[18]  Michael I. Jordan,et al.  Mean Field Theory for Sigmoid Belief Networks , 1996, J. Artif. Intell. Res..

[19]  Nevin Lianwen Zhang,et al.  Exploiting Causal Independence in Bayesian Network Inference , 1996, J. Artif. Intell. Res..

[20]  Hua Lee,et al.  Maximum Entropy and Bayesian Methods. , 1996 .

[21]  Joseph Y. Halpern A Counterexample to Theorems of Cox and Fine , 1996, AAAI/IAAI, Vol. 2.

[22]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[23]  Gregory M. Provan,et al.  Query DAGs: A practical paradigm for implementing belief-network inference , 1996, UAI.

[24]  Kurt Konolige,et al.  Improved Occupancy Grids for Map Building , 1997, Auton. Robots.

[25]  Avi Pfeffer,et al.  Object-Oriented Bayesian Networks , 1997, UAI.

[26]  Stuart J. Russell,et al.  Reinforcement Learning with Hierarchies of Machines , 1997, NIPS.

[27]  Ronen I. Brafman,et al.  Applications of a logic of knowledge to motion planning under uncertainty , 1997, JACM.

[28]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[29]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[30]  M. C. Garrido,et al.  Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians , 1998, J. Artif. Intell. Res..

[31]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[32]  Ève Coste-Manière,et al.  The ORCCAD Architecture , 1998, Int. J. Robotics Res..

[33]  Stanley A. Schneider,et al.  ControlShell: A Software Architecture for Complex Electromechanical Systems , 1998, Int. J. Robotics Res..

[34]  Thomas C. Henderson,et al.  Instrumented Sensor System Architecture , 1998, Int. J. Robotics Res..

[35]  Michael I. Jordan Graphical Models , 2003 .

[36]  Olivier Aycard Architecture de contrôle pour robot mobile en environnement intérieur structuré , 1998 .

[37]  Leslie Pack Kaelbling,et al.  Learning models for robot navigation , 1999 .

[38]  Joseph Y. Halpern Cox's Theorem Revisited , 1999, ArXiv.

[39]  Julio K. Rosenblatt,et al.  Optimal Selection of Uncertain Actions by Maximizing Expected Utility , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[40]  Michael I. Jordan,et al.  Variational Probabilistic Inference and the QMR-DT Network , 2011, J. Artif. Intell. Res..

[41]  Kamel Mekhnacha,et al.  Méthodes Probabilistes Bayesiennes pour la prise en en compte des incertitudes géométriques : Application à la CAO-Robotique , 1999 .

[42]  Julien Diard,et al.  Bayesian Learning Experiments with a Khepera Robot , 1999 .

[43]  Craig Boutilier,et al.  Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.

[44]  Julien Diard,et al.  Bayesian Programming and Hierarchical Learning in Robotics , 2000 .

[45]  Stergios I. Roumeliotis,et al.  Collective localization: a distributed Kalman filter approach to localization of groups of mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[46]  Sebastian Thrun,et al.  Towards programming tools for robots that integrate probabilistic computation and learning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[47]  Pierre Bessière,et al.  A robotic CAD system using a Bayesian framework , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[48]  Michael Beetz,et al.  Learning structured reactive navigation plans from executing MDP navigation policies , 2001, AGENTS '01.

[49]  Pierre Bessière,et al.  The design and implementation of a Bayesian CAD modeler for robotic applications , 2001, Adv. Robotics.

[50]  Julien Diard,et al.  A Bayesian framework for robotic programming , 2001 .

[51]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[52]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[53]  L. Kaelbling,et al.  Toward Hierachical Decomposition for Planning in Uncertain Environments , 2001 .

[54]  Pierre Bessière,et al.  Chasing an elusive target with a mobile robot , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[55]  Thierry Fraichard,et al.  Multi-sensor data fusion using Bayesian programming : an automotive application , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[56]  Julien Diard,et al.  La carte bayésienne : un modèle probabiliste hiérarchique pour la navigation en robotique mobile. (The Bayesian map - A hierarchical probabilistic model for mobile robot navigation) , 2003 .

[57]  Pierre Bessière,et al.  Using Bayesian Programming for multi-sensor multi-target tracking in automotive applications , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[58]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[59]  Julien Diard,et al.  Programmation bayésienne des robots , 2004, Rev. d'Intelligence Artif..

[60]  Sebastian Thrun,et al.  Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.

[61]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[62]  Sunita Sarawagi Learning with Graphical Models , 2008 .

[63]  P. Deb Finite Mixture Models , 2008 .

[64]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[65]  J. A. Robinson,et al.  LOGLISP: an alternative to PROLOG , 2013 .