[Poster] Turbidity-based aerial perspective rendering for mixed reality

In outdoor Mixed Reality (MR), objects distant from the observer suffer from an effect called aerial perspective that fades the color of the objects and blends it to the environmental light color. The aerial perspective can be modeled using a physics-based approach; however, handling the changing and unpredictable environmental illumination is demanding. We present a turbidity-based method for rendering a virtual object with aerial perspective effect in a MR application. The proposed method first estimates the turbidity by matching luminance distributions of sky models and a captured omnidirectional sky image. Then the obtained turbidity is used to render the virtual object with aerial perspective.

[1]  Jean-Philippe Tarel,et al.  Improved visibility of road scene images under heterogeneous fog , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[2]  Dani Lischinski,et al.  Deep photo: model-based photograph enhancement and viewing , 2008, SIGGRAPH 2008.

[3]  David S. Ebert,et al.  Efficient Rendering of Atmospheric Phenomena , 2004, Rendering Techniques.

[4]  Oskar Elek,et al.  Real-time spectral scattering in large-scale natural participating media , 2010, SCCG.

[5]  Katsushi Ikeuchi,et al.  Camera Spectral Sensitivity and White Balance Estimation from Sky Images , 2013, International Journal of Computer Vision.

[6]  Fabrice Neyret,et al.  Precomputed Atmospheric Scattering , 2008, Comput. Graph. Forum.

[7]  Tetsuya Kakuta,et al.  Foreground and shadow occlusion handling for outdoor augmented reality , 2010, 2010 IEEE International Symposium on Mixed and Augmented Reality.

[8]  John William Strutt,et al.  Scientific Papers: On the Scattering of Light by small Particles , 2009 .

[9]  Hongxun Zhao Estimation of Atmospheric Turbidity from a Sky Image and Its Applications , 2012 .

[10]  Peter Shirley,et al.  A practical analytic model for daylight , 1999, SIGGRAPH.

[11]  Yoshinori Dobashi,et al.  Interactive rendering of atmospheric scattering effects using graphics hardware , 2002, HWWS '02.

[12]  Robby T. Tan,et al.  Visibility in bad weather from a single image , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[14]  Ralf Stokholm Nielsen Real Time Rendering of| Atmospheric Scattering Effects for Flight Simulators , 2003 .

[15]  Shree K. Nayar,et al.  Contrast Restoration of Weather Degraded Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. Moran,et al.  Sensation and perception , 1980 .

[17]  A. Cantor Optics of the atmosphere--Scattering by molecules and particles , 1978, IEEE Journal of Quantum Electronics.

[18]  Michael Wimmer,et al.  Efficient Spherical Harmonics Lighting with the Preetham Skylight Model , 2008, Eurographics.

[19]  Shree K. Nayar,et al.  Vision in bad weather , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[20]  Martin Falk,et al.  Real-Time Rendering of Planets with Atmospheres , 2007, J. WSCG.

[21]  Shree K. Nayar,et al.  Vision and the Atmosphere , 2002, International Journal of Computer Vision.

[22]  J. Paton,et al.  The Scattering of Light by Small Particles , 1958, Nature.

[23]  D. K. Lynch,et al.  Color and light in nature , 1995 .

[24]  Yoav Y. Schechner,et al.  Blind Haze Separation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).