Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Neural adaptation underlies the ability of neurons to maximize encoded information over a wide dynamic range of input stimuli. Recent spiking neuron models like the adaptive Spike Response Model implement adaptation as additive fixed-size fast spike-triggered threshold dynamics and slow spike-triggered currents. Such adaptation accurately models neural spiking behavior over a limited dynamic input range. To extend efficient coding over large changes in dynamic input range, we propose a multiplicative adaptive Spike Response Model where the spike-triggered adaptation dynamics are scaled multiplicatively by the adaptation state at the time of spiking. We show that, unlike the additive adaptation model, the firing rate in our multiplicative adaptation model saturates to a realistic maximum spike-rate regardless of input magnitude. Additionally, when simulating variance switching experiments, the model quantitatively fits experimental data over a wide dynamic range. Dynamic threshold models of adaptation furthermore suggest a straightforward interpretation of neural activity in terms of dynamic differential signal encoding with shifted and weighted exponential kernels. We show that when thus encoding rectified filtered stimulus signals, the multiplicative adaptive Spike Response Model achieves a high coding efficiency and maintains this efficiency over changes in the dynamic signal range of several orders of magnitude, without changing model parameters.

[1]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[2]  Romain Brette Spiking Models for Level-Invariant Encoding , 2012, Front. Comput. Neurosci..

[3]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[4]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[5]  Marco Buiatti,et al.  Variance normalisation: a key mechanism for temporal adaptation in natural vision? , 2003, Vision Research.

[6]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[7]  M. Nelson,et al.  Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish. , 1996, Journal of neurophysiology.

[8]  Richard Naud The Dynamics of Adapting Neurons , 2011 .

[9]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[10]  Wulfram Gerstner,et al.  Predicting spike timing of neocortical pyramidal neurons by simple threshold models , 2006, Journal of Computational Neuroscience.

[11]  Sander M. Bohte,et al.  Fractionally Predictive Spiking Neurons , 2010, NIPS.

[12]  Alan A. Stocker,et al.  Is the Homunculus Aware of Sensory Adaptation? , 2009, Neural Computation.

[13]  S. Baccus,et al.  Linking the Computational Structure of Variance Adaptation to Biophysical Mechanisms , 2012, Neuron.

[14]  Gerstner Wulfram Multiple timescales of adaptation in Single Neuron Models , 2010 .

[15]  J. V. van Hateren,et al.  Asymmetric dynamics of adaptation after onset and offset of flicker. , 2004, Journal of vision.

[16]  Adrienne L. Fairhall,et al.  Intrinsic Gain Modulation and Adaptive Neural Coding , 2008, PLoS Comput. Biol..

[17]  Patrick J Drew,et al.  Models and properties of power-law adaptation in neural systems. , 2006, Journal of neurophysiology.

[18]  Anthony M. Zador,et al.  Asymmetric Dynamics in Optimal Variance Adaptation , 1998, Neural Computation.

[19]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[20]  A. Fairhall,et al.  Fractional differentiation by neocortical pyramidal neurons , 2008, Nature Neuroscience.

[21]  S. Laughlin The role of sensory adaptation in the retina. , 1989, The Journal of experimental biology.

[22]  J. V. van Hateren,et al.  Recovery from contrast adaptation matches ideal-observer predictions. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[24]  Jean-Pascal Pfister,et al.  STDP in Adaptive Neurons Gives Close-To-Optimal Information Transmission , 2010, Front. Comput. Neurosci..

[25]  E J Chichilnisky,et al.  Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.

[26]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[27]  Wulfram Gerstner,et al.  Spiking Neuron Models: An Introduction , 2002 .

[28]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[29]  Tobi Delbrück,et al.  A 128$\times$ 128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor , 2008, IEEE Journal of Solid-State Circuits.

[30]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[31]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[32]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[33]  A. Fairhall,et al.  Timescales of Inference in Visual Adaptation , 2009, Neuron.

[34]  Robert A. Harris,et al.  Contrast Gain Reduction in Fly Motion Adaptation , 2000, Neuron.