Retrospective Theses and Dissertations 1987 On the structure of intractable sets

On the structure of intractable sets " (1987). Retrospective Theses and Dissertations. Paper 11684. While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: ® Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17"x 23" black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarity on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6"x 9" black and white photographic prints are available for any photographs or illustrations that cannot be reproduced satisfactorily by xerography. 1987 Signature was redacted for privacy.

[1]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[2]  Emil L. Post Recursively enumerable sets of positive integers and their decision problems , 1944 .

[3]  John von Neumann,et al.  1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .

[4]  M. Rabin Degree of difficulty of computing a function and a partial ordering of recursive sets , 1960 .

[5]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[6]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[7]  Richard Edwin Stearns,et al.  Hierarchies of memory limited computations , 1965, SWCT.

[8]  Arnold L. Rosenberg,et al.  Real-Time Definable Languages , 1967, JACM.

[9]  C. Jockusch Semirecursive sets and positive reducibility , 1968 .

[10]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[11]  Stephen A. Cook,et al.  Review: Alan Cobham, Yehoshua Bar-Hillel, The Intrinsic Computational Difficulty of Functions , 1969 .

[12]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[13]  A. R. Meyer,et al.  COMPUTATIONALLY COMPLEX AND PSEUDO-RANDOM ZERO-ONE VALUED FUNCTIONS††Portions of this work were carried out at Carngie-Mellon University, while the authors were in the Department of Computer Science. Portions of these results were reported in preliminary form in [1]. , 1971 .

[14]  Edward L. Robertson,et al.  Recursive Properties of Abstract Complexity Classes , 1972, J. ACM.

[15]  Arnold L. Rosenberg,et al.  Real-Time Simulation of Multihead Tape Units , 1972, JACM.

[16]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..

[17]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[18]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[19]  Ronald V. Book,et al.  On Languages Accepted in Polynomial Time , 1972, SIAM J. Comput..

[20]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[21]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[22]  Sartaj Sahni,et al.  Computationally Related Problems , 1974, SIAM J. Comput..

[23]  Philippe Flajolet,et al.  On Sets Having Only Hard Subsets , 1974, ICALP.

[24]  Manuel Blum,et al.  On Almost Everywhere Complex Recursive Functions , 1974, JACM.

[25]  Nancy A. Lynch,et al.  Comparison of polynomial-time reducibilities , 1974, STOC '74.

[26]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[27]  Nancy A. Lynch,et al.  On Reducibility to Complex or Sparse Sets , 1975, JACM.

[28]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[29]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[30]  Juris Hartmanis,et al.  On isomorphisms and density of NP and other complete sets , 1976, STOC '76.

[31]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[32]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[33]  Leonard Berman,et al.  On the structure of complete sets: Almost everywhere complexity and infinitely often speedup , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[34]  Wolfgang J. Paul,et al.  On time hierarchies , 1977, STOC '77.

[35]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[36]  Seth Breidbart On Splitting Recursive Sets , 1978, J. Comput. Syst. Sci..

[37]  Paul Young,et al.  An introduction to the general theory of algorithms , 1978 .

[38]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[39]  J. Ferrante,et al.  The computational complexity of logical theories , 1979 .

[40]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[41]  Christopher S. Hill,et al.  Mechanism, Mentalism and Metamathematics , 1980 .

[42]  Martin Fürer,et al.  The tight deterministic time hierarchy , 1982, STOC '82.

[43]  Michael Sipser,et al.  On Relativization and the Existence of Complete Sets , 1982, ICALP.

[44]  Alan L. Selman,et al.  Analogues of Semicursive Sets and Effective Reducibilities to the Study of NP Complexity , 1982, Inf. Control..

[45]  C. Rackoff Relativized Questions Involving Probabilistic Algorithms , 1982, JACM.

[46]  Alan L. Selman,et al.  Reductions on NP and P-Selective Sets , 1982, Theor. Comput. Sci..

[47]  Juris Hartmanis On Sparse Sets in NP - P , 1983, Inf. Process. Lett..

[48]  Juris Hartmanis,et al.  Generalized Kolmogorov complexity and the structure of feasible computations , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[49]  Paul Young,et al.  Some structural properties of polynomial reducibilities and sets in NP , 1983, STOC.

[50]  Endre Szemerédi,et al.  On determinism versus non-determinism and related problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[51]  Juris Hartmanis,et al.  Computation Times of NP Sets of Different Densities , 1983, ICALP.

[52]  Wolfgang Maass,et al.  Oracle-Dependent Properties of the Lattice of NP Sets , 1983, Theor. Comput. Sci..

[53]  Pekka Orponen,et al.  The Structure of Polynomial Complexity Cores (Extended Abstract) , 1984, MFCS.

[54]  Timothy J. Long,et al.  Quantitative Relativizations of Complexity Classes , 1984, SIAM J. Comput..

[55]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[56]  Yacov Yacobi,et al.  Hard-core theorems for complexity classes , 1985, JACM.

[57]  Klaus Ambos-Spies On the Relative Complexity of Subproblems of Intractable Problems , 1985, STACS.

[58]  Eric Allender,et al.  The Complexity of Sparse Sets in P , 1986, SCT.

[59]  Osamu Watanabe,et al.  What Is a Hard Instance of a Computational Problem? , 1986, SCT.

[60]  Joachim Grollmann,et al.  Relativizations of Unambiguous and Random Polynomial Time Classes , 1986, SIAM J. Comput..

[61]  Eric Allender,et al.  P-Printable Sets , 1988, SIAM J. Comput..

[62]  José L. Balcázar,et al.  Immunity and Simplicity in Relativizations of Probabilistic Complexity Classes , 1988, RAIRO Theor. Informatics Appl..

[63]  José L. Balcázar,et al.  Bi-immune sets for complexity classes , 2005, Mathematical systems theory.

[64]  Sheila A. Greibach,et al.  Quasi-realtime languages , 1970, Mathematical systems theory.

[65]  David P. Dobkin,et al.  Inclusion complete tally languages and the Hartmanis-Berman conjecture , 2005, Mathematical systems theory.