Disturbance Attenuation of LPV Systems with Bounded Inputs

A design technique is proposed for disturbance attenuation in linear parameter varying (LPV) systems with bounded inputs. The actuator constraints are handled via a typical LPV approach, in which the time varying parameter is related to the error between the command input and the actual input. Since these two signals are known in most applications, a standard LPV structure for the controller is possible. As a result, the design of controllers with bounded actuators is no more difficult – fundamentally – than the unconstrained control of the LPV system. For example, state feedback problem is convex and the output feedback problem is convex if all of the parameters are available on-line. Cases where the parameters are not available on-line (i.e., traditional robust problems), rate constraint or when the underlying Lyapunov matrix is itself parameter varying are also discussed.

[1]  Ali Saberi,et al.  A Semi-Global Low-and-High Gain Design Technique for Linear Systems with Input Saturation - Stabiliz , 1993 .

[2]  I.E. Kose,et al.  Control of LPV systems with partly-measured parameters , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[3]  Faryar Jabbari Output feedback controllers for systems with structured uncertainty , 1997, IEEE Trans. Autom. Control..

[4]  Dennis S. Bernstein,et al.  Anti-windup compensator synthesis for systems with saturation actuators , 1995 .

[5]  Vikram Kapila,et al.  Antiwindup controllers for systems with input nonlinearities , 1996 .

[6]  Sophie Tarbouriech,et al.  Intelligent anti‐windup for systems with input magnitude saturation , 1998 .

[7]  A. Teel Linear systems with input nonlinearities: Global stabilization by scheduling a family of H∞-type controllers , 1995 .

[8]  Manfred Morari,et al.  Robust control of processes subject to saturation nonlinearities , 1990 .

[9]  K. Grigoriadis,et al.  LPV-based control of systems with amplitude and rate actuator saturation constraints , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[10]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[11]  Athanasios Sideris,et al.  H ∞ control with parametric Lyapunov functions , 1997 .

[12]  Faryar Jabbari,et al.  Control of LPV systems with partly measured parameters , 1999, IEEE Trans. Autom. Control..

[13]  Wassim M. Haddad,et al.  Actuator amplitude saturation control for systems with exogenous disturbances , 2002, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[14]  Faryar Jabbari,et al.  Disturbance attenuation for systems with input saturation: An LMI approach , 1999, IEEE Trans. Autom. Control..

[15]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[16]  Faryar Jabbari,et al.  Rbust control of linear systems with real parametric uncertainty , 1999, Autom..

[17]  D. Bernstein,et al.  A chronological bibliography on saturating actuators , 1995 .

[18]  Massimiliano Mattei,et al.  A MULTIVARIABLE STABILITY MARGIN IN THE PRESENCE OF TIME-VARYING, BOUNDED RATE GAINS , 1997 .

[19]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[20]  Graham C. Goodwin,et al.  Control system design issues for unstable linear systems with saturated inputs , 1995 .

[21]  Andrew R. Teel,et al.  Control of linear systems with saturating actuators , 1996 .

[22]  Faryar Jabbari,et al.  A direct characterization of L2-gain controllers for LPV systems , 1998, IEEE Trans. Autom. Control..

[23]  J. Stoustrup,et al.  Robust stability and performance of uncertain systems in state space , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[24]  Carsten W. Scherer,et al.  Multi-Objective Output-Feedback Control via LMI Optimization , 1996 .

[25]  Karolos M. Grigoriadis,et al.  Anti-windup controller synthesis via linear parameter-varying control design methods , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[26]  K. Poolla,et al.  A linear matrix inequality approach to peak‐to‐peak gain minimization , 1996 .

[27]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[28]  Jordan M. Berg,et al.  An analysis of the destabilizing effect of daisy chained rate-limited actuators , 1996, IEEE Trans. Control. Syst. Technol..

[29]  Dennis S. Bernstein,et al.  Dynamic output feedback compensation for linear systems with independent amplitude and rate saturations , 1997 .