Three theorems on polynomial degrees of NP-sets

We show that recursive ascending sequences of polynomial time (p-) degrees do not possess minimal upper bounds; that, for every nonzero p-degree a, there is a lesser nonzero p-degree b which does not help a; and that every nonzero p-degree is half of a minimal pair.

[1]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[2]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[3]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[4]  Diana Schmidt On the complement of one complexity class in another , 1983, Logic and Machines.

[5]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[6]  Steven Homer,et al.  Minimal degrees for polynomial reducibilities , 1987, JACM.

[7]  Uwe Schöning Minimal pairs for P , 1984, Theor. Comput. Sci..

[8]  Richard E. Ladner Polynominal time reducibility , 1973, STOC '73.

[9]  Kurt Mehlhorn,et al.  Polynomial and abstract subrecursive classes , 1974, STOC '74.

[10]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[11]  Uwe Schöning A Uniform Approach to Obtain Diagonal Sets in Complexity Classes , 1982, Theor. Comput. Sci..

[12]  Klaus Ambos-Spies On the Structure of Polynomial Time Degrees , 1984, STACS.

[13]  Nancy A. Lynch,et al.  Sets that don't help , 1973, STOC '73.

[14]  Richard J. Lipton,et al.  On the Structure of Sets in NP and Other Complexity Classes , 1981, Theor. Comput. Sci..

[15]  Klaus Ambos-Spies Sublattices of the Polynomial Time Degrees , 1985, Inf. Control..

[16]  José L. Balcázar,et al.  A Note on a Theorem by Ladner , 1982, Inf. Process. Lett..

[17]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.