Mobile robot trajectory tracking using PID fast terminal sliding mode inverse dynamic Control

This paper presents a PID fast terminal sliding mode dynamic inverse control method for wheeled mobile robots. Because of the nonlinear and nonholonomic properties, it is difficult to establish an appropriate model of the mobile robot system for trajectory tracking. The PID Control is based on a fast terminal sliding mode control to ensure asymptotic stabilization of the robot's position and orientation around the desired trajectory, taking into account the kinematics and dynamics of the robot. The idea behind this strategy is to use the terminal sliding mode control approach to assure the finite time convergence of tracking errors to zero. Simulation works demonstrate the efficacy of the proposed system for mobile robots robust tracking trajectory.

[1]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[2]  Graham C. Goodwin,et al.  Persistency of excitation for nonminimal models of systems having purely deterministic disturbances , 1985 .

[3]  Tzuu-Hseng S. Li,et al.  Fuzzy target tracking control of autonomous mobile robots by using infrared sensors , 2004, IEEE Transactions on Fuzzy Systems.

[4]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..

[5]  M.A. Rahman,et al.  Limitations of simplified fuzzy logic controller for IPM motor drive , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[6]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..

[7]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot using neural networks , 1998, IEEE Trans. Neural Networks.

[8]  S LiTzuu-Hseng,et al.  MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators , 2010 .

[9]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[10]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[11]  Tzuu-Hseng S. Li,et al.  Fuzzy terminal sliding-mode controller for robotic manipulators , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[12]  Myung Hwangbo,et al.  A stable target-tracking control for unicycle mobile robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[13]  Frank L. Lewis,et al.  Robust backstepping control of nonlinear systems using neural networks , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[14]  Zhong-Ping Jiang,et al.  A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[15]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[16]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[17]  Thierry Floquet,et al.  Second‐order sliding mode control of underactuated mechanical systems I: Local stabilization with application to an inverted pendulum , 2008 .

[18]  Yangming Zhang,et al.  Finite-time cascaded tracking control approach for mobile robots , 2014, Inf. Sci..

[19]  Suk-Kyo Hong,et al.  Decoupling Control of A Class of Underactuated Mechanical Systems Based on Sliding Mode Control , 2006, 2006 SICE-ICASE International Joint Conference.

[20]  Shihua Li,et al.  Finite‐Time Tracking Control for Nonholonomic Mobile Robots Based on Visual Servoing , 2014 .

[21]  Antonella Ferrara,et al.  Second-order sliding-mode control of a mobile robot based on a harmonic potential field , 2008 .

[22]  Ho Yim,et al.  Motion planning using fuzzy logic control with minimum sensors , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[23]  Chih-Lyang Hwang A novel Takagi-Sugeno-based robust adaptive fuzzy sliding-mode controller , 2004, IEEE Transactions on Fuzzy Systems.

[24]  Aurelio Piazzi,et al.  Smooth motion generation for unicycle mobile robots via dynamic path inversion , 2004, IEEE Transactions on Robotics.