Neurogliaform cells in cortical circuits

[1]  M. Farries,et al.  Novel Striatal GABAergic Interneuron Populations Labeled in the 5HT3a(EGFP) Mouse. , 2016, Cerebral cortex.

[2]  C. McBain,et al.  Navigating the circuitry of the brain's GPS system: Future challenges for neurophysiologists , 2015, Hippocampus.

[3]  Theofanis Karayannis,et al.  Sensory inputs control the integration of neurogliaform interneurons into cortical circuits , 2015, Nature Neuroscience.

[4]  György Buzsáki,et al.  Tasks for inhibitory interneurons in intact brain circuits , 2015, Neuropharmacology.

[5]  G. Maccaferri,et al.  Optogenetic Activation of Cajal-Retzius Cells Reveals Their Glutamatergic Output and a Novel Feedforward Circuit in the Developing Mouse Hippocampus , 2014, The Journal of Neuroscience.

[6]  Peter Jonas,et al.  Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function , 2014, Science.

[7]  Clara S. Tang,et al.  Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity , 2014, Front. Cell. Neurosci..

[8]  D. Poulsen,et al.  Hilar Mossy Cells Provide the First Glutamatergic Synapses to Adult-Born Dentate Granule Cells , 2014, The Journal of Neuroscience.

[9]  A. Brombas,et al.  Activity-Dependent Modulation of Layer 1 Inhibitory Neocortical Circuits by Acetylcholine , 2014, The Journal of Neuroscience.

[10]  László G Puskás,et al.  GABAergic Neurogliaform Cells Represent Local Sources of Insulin in the Cerebral Cortex , 2014, The Journal of Neuroscience.

[11]  Marco Capogna,et al.  Firing of Hippocampal Neurogliaform Cells Induces Suppression of Synaptic Inhibition , 2014, The Journal of Neuroscience.

[12]  P. Jonas,et al.  Theta-Gamma-Modulated Synaptic Currents in Hippocampal Granule Cells In Vivo Define a Mechanism for Network Oscillations , 2013, Neuron.

[13]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[14]  Gerald J. Sun,et al.  Parvalbumin interneurons mediate neuronal circuitry–neurogenesis coupling in the adult hippocampus , 2013, Nature Neuroscience.

[15]  J. Gaiarsa,et al.  Emerging neurotrophic role of GABAB receptors in neuronal circuit development , 2013, Front. Cell. Neurosci..

[16]  C. McBain,et al.  Dual embryonic origins of functionally distinct hippocampal O-LM cells revealed by differential 5-HT3AR expression , 2013, Nature Neuroscience.

[17]  N. Spruston,et al.  Mechanisms of retroaxonal barrage firing in hippocampal interneurons , 2013, The Journal of physiology.

[18]  Ivan Soltesz,et al.  Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐pyramidal cell connectivity , 2013, Hippocampus.

[19]  C. McBain,et al.  Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity , 2013, Nature Neuroscience.

[20]  Jacques I Wadiche,et al.  GABA Depolarization Is Required for Experience-Dependent Synapse Unsilencing in Adult-Born Neurons , 2013, The Journal of Neuroscience.

[21]  G. Maccaferri,et al.  Novel GABAergic Circuits Mediating Excitation/Inhibition of Cajal-Retzius Cells in the Developing Hippocampus , 2013, The Journal of Neuroscience.

[22]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[23]  C. Dieni,et al.  Dynamic functions of GABA signaling during granule cell maturation , 2013, Front. Neural Circuits.

[24]  C. McBain,et al.  Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation , 2012, Nature Neuroscience.

[25]  T. Vitalis,et al.  Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits , 2012, Front. Neural Circuits.

[26]  Michael Lagler,et al.  Behavior-dependent specialization of identified hippocampal interneurons , 2012, Nature Neuroscience.

[27]  Michael Hasselmo,et al.  GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations , 2012, Hippocampus.

[28]  Thomas Klausberger,et al.  Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons , 2012, Hippocampus.

[29]  P. Somogyi,et al.  Molecular analysis of ivy cells of the hippocampal CA1 stratum radiatum using spectral identification of immunofluorophores , 2012, Front. Neural Circuits.

[30]  I. Soltesz,et al.  Neurogliaform and Ivy Cells: A Major Family of nNOS Expressing GABAergic Neurons , 2012, Front. Neural Circuits.

[31]  I. Soltesz,et al.  Ivy and Neurogliaform Interneurons Are a Major Target of μ-Opioid Receptor Modulation , 2011, The Journal of Neuroscience.

[32]  Jacques I Wadiche,et al.  Ivy/Neurogliaform Interneurons Coordinate Activity in the Neurogenic Niche , 2011, Nature Neuroscience.

[33]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[34]  Ivan Soltesz,et al.  Neurogliaform cells in the molecular layer of the dentate gyrus as feed‐forward γ‐aminobutyric acidergic modulators of entorhinal–hippocampal interplay , 2011, The Journal of comparative neurology.

[35]  Theofanis Karayannis,et al.  Neuronal activity is required for the development of specific cortical interneuron subtypes , 2011, Nature.

[36]  R. Pearce,et al.  GABAA,slow: causes and consequences , 2011, Trends in Neurosciences.

[37]  Christian Wozny,et al.  Specificity of Synaptic Connectivity between Layer 1 Inhibitory Interneurons and Layer 2/3 Pyramidal Neurons in the Rat Neocortex , 2011, Cerebral cortex.

[38]  N. Spruston,et al.  Slow integration leads to persistent action potential firing in distal axons of coupled interneurons , 2010, Nature neuroscience.

[39]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[40]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[41]  Laura A. Ewell,et al.  Frequency-Tuned Distribution of Inhibition in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[42]  M. Bartos,et al.  Associative Plasticity at Excitatory Synapses Facilitates Recruitment of Fast-Spiking Interneurons in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[43]  D. Rusakov,et al.  Slow GABA Transient and Receptor Desensitization Shape Synaptic Responses Evoked by Hippocampal Neurogliaform Cells , 2010, The Journal of Neuroscience.

[44]  O. Marín,et al.  Generation of interneuron diversity in the mouse cerebral cortex , 2010, The European journal of neuroscience.

[45]  Frances K Skinner,et al.  Characterization of voltage-gated K+ currents contributing to subthreshold membrane potential oscillations in hippocampal CA1 interneurons. , 2010, Journal of neurophysiology.

[46]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[47]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[48]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[49]  Jacques I Wadiche,et al.  Input-Specific GABAergic Signaling to Newborn Neurons in Adult Dentate Gyrus , 2009, The Journal of Neuroscience.

[50]  Z. Borhegyi,et al.  Fast Synaptic Subcortical Control of Hippocampal Circuits , 2009, Science.

[51]  F. Gage,et al.  GABA-cAMP Response Element-Binding Protein Signaling Regulates Maturation and Survival of Newly Generated Neurons in the Adult Hippocampus , 2009, The Journal of Neuroscience.

[52]  Adriano B. L. Tort,et al.  Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons , 2009, Proceedings of the National Academy of Sciences.

[53]  Gord Fishell,et al.  The Developmental Integration of Cortical Interneurons into a Functional Network , 2022 .

[54]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[55]  D. Rusakov,et al.  GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells , 2008, The Journal of Neuroscience.

[56]  Jozsef Csicsvari,et al.  Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity , 2008, Neuron.

[57]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[58]  G. Tamás,et al.  Output of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex , 2007, Frontiers in neural circuits.

[59]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[60]  I. Aradi,et al.  Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus , 2007, The Journal of physiology.

[61]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[62]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[63]  J. Rossier,et al.  Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum , 2006, The Journal of Neuroscience.

[64]  G. Mckhann GABA Regulates Synaptic Integration of Newly Generated Neurons in the Adult Brain. , 2006, Neurosurgery.

[65]  G. Westbrook,et al.  GABAergic signaling to newborn neurons in dentate gyrus. , 2005, Journal of neurophysiology.

[66]  N. Spruston,et al.  Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons , 2005, Nature Neuroscience.

[67]  A. F. Schinder,et al.  Neuronal Differentiation in the Adult Hippocampus Recapitulates Embryonic Development , 2005, The Journal of Neuroscience.

[68]  G. Maccaferri,et al.  Electrical Coupling between Interneurons with Different Excitable Properties in the Stratum Lacunosum-Moleculare of the Juvenile CA1 Rat Hippocampus , 2005, The Journal of Neuroscience.

[69]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[70]  G. Tamás,et al.  Gap-Junctional Coupling between Neurogliaform Cells and Various Interneuron Types in the Neocortex , 2005, The Journal of Neuroscience.

[71]  J. Rossier,et al.  Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways , 2004, The Journal of Neuroscience.

[72]  G. Westbrook,et al.  Synapse Density Regulates Independence at Unitary Inhibitory Synapses , 2003, The Journal of Neuroscience.

[73]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[74]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[75]  G. Westbrook,et al.  Slow Desensitization Regulates the Availability of Synaptic GABAA Receptors , 2000, The Journal of Neuroscience.

[76]  M. Atzori,et al.  H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking , 2000, Nature Neuroscience.

[77]  J. White,et al.  Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[78]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[79]  J. White,et al.  Interactions between Distinct GABAA Circuits in Hippocampus , 2000, Neuron.

[80]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[81]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[82]  Two temporally overlapping "delayed-rectifiers" determine the voltage-dependent potassium current phenotype in cultured hippocampal interneurons. , 1996, Journal of neurophysiology.

[83]  Y. Ben‐Ari,et al.  Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors. , 1995, Journal of neurophysiology.

[84]  C. McBain,et al.  Potassium conductances underlying repolarization and after‐hyperpolarization in rat CA1 hippocampal interneurones. , 1995, The Journal of physiology.

[85]  C. McBain,et al.  Voltage‐gated potassium currents in stratum oriens‐alveus inhibitory neurones of the rat CA1 hippocampus. , 1995, The Journal of physiology.

[86]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  J. Lacaille,et al.  Membrane properties and synaptic responses of interneurons located near the stratum lacunosum-moleculare/radiatum border of area CA1 in whole-cell recordings from rat hippocampal slices. , 1994, Journal of neurophysiology.

[89]  B. Rudy,et al.  Differential expression of Shaw-related K+ channels in the rat central nervous system , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  R. Nicoll,et al.  Local and diffuse synaptic actions of GABA in the hippocampus , 1993, Neuron.

[91]  W B Levy,et al.  Electrophysiological and pharmacological characterization of perforant path synapses in CA1: mediation by glutamate receptors. , 1992, Journal of neurophysiology.

[92]  J. Lacaille,et al.  Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  J. Lacaille,et al.  Ultrastructure of stratum lacunosum moleculare interneurons of hippocampal CA1 region , 1988, Synapse.