Advances in the development , efficiency , and application of auxiliary field and real-space variational and diffusion Quantum

We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing the accuracy. Advances in real space methods include techniques for accurate computation of bandgaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods, including GW and density functional based techniques. To provide an improved foundation for these calculations, we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK.

[1]  F. Malone,et al.  Overcoming the Memory Bottleneck in Auxiliary Field Quantum Monte Carlo Simulations with Interpolative Separable Density Fitting. , 2018, Journal of chemical theory and computation.

[2]  Joonho Lee,et al.  Systematically Improvable Tensor Hypercontraction: Interpolative Separable Density-Fitting for Molecules Applied to Exact Exchange, Second- and Third-Order Møller-Plesset Perturbation Theory. , 2019, Journal of chemical theory and computation.

[3]  Dynamic structure factor and momentum distribution of a trapped Bose gas , 1999, cond-mat/9912089.

[4]  Lubos Mitas,et al.  A new generation of effective core potentials for correlated calculations. , 2017, The Journal of chemical physics.

[5]  Evgeny Epifanovsky,et al.  Coupled-Cluster Valence-Bond Singles and Doubles for Strongly Correlated Systems: Block-Tensor Based Implementation and Application to Oligoacenes. , 2017, Journal of chemical theory and computation.

[6]  Shiwei Zhang,et al.  Reaching the Continuum Limit in Finite-Temperature Ab Initio Field-Theory Computations in Many-Fermion Systems. , 2019, Physical review letters.

[7]  Kayahan Saritas,et al.  Excitation Energies of Localized Correlated Defects via Quantum Monte Carlo: A Case Study of Mn4+-Doped Phosphors. , 2018, The journal of physical chemistry letters.

[8]  E. Teller,et al.  The Capture of Negative Mesotrons in Matter , 1947 .

[9]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[10]  K. Jordan,et al.  Application of the diffusion Monte Carlo method to the binding of excess electrons to water clusters. , 2010, The journal of physical chemistry. A.

[11]  Roberto Peverati,et al.  QMC-SW: A simple workflow for quantum Monte Carlo calculations in chemistry , 2019, SoftwareX.

[12]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[13]  D. Ceperley,et al.  Momentum distribution of the homogeneous electron gas. , 2011, Physical review letters.

[14]  D. Ceperley,et al.  Momentum distribution and renormalization factor in sodium and the electron gas. , 2010, Physical review letters.

[15]  G. Chan,et al.  Hamiltonian symmetries in auxiliary-field quantum Monte Carlo calculations for electronic structure , 2019, Physical Review B.

[16]  M. Brik,et al.  Ab Initio Studies of the Structural, Electronic, and Optical Properties of K2SiF6 Single Crystals at Ambient and Elevated Hydrostatic Pressure , 2012 .

[17]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[18]  Joonho Lee,et al.  An auxiliary-Field quantum Monte Carlo perspective on the ground state of the dense uniform electron gas: An investigation with Hartree-Fock trial wavefunctions , 2019, The Journal of Chemical Physics.

[19]  M. Klintenberg,et al.  Data mining and accelerated electronic structure theory as a tool in the search for new functional materials , 2008, 0808.2125.

[20]  S. Moroni,et al.  Orbital-dependent backflow wave functions for real-space quantum Monte Carlo , 2019, Physical Review B.

[21]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[22]  W. Duley,et al.  Multiphoton excitation of Mn4+ and Cr3+ luminescence in MgO , 1990 .

[23]  Gustavo E Scuseria,et al.  Multi-component symmetry-projected approach for molecular ground state correlations. , 2013, The Journal of chemical physics.

[24]  H. W. Milnes,et al.  Energy levels of an electron in the field of a finite dipole , 1960 .

[25]  M A Alam,et al.  Observation of a strongly nested Fermi surface in the shape-memory alloy Ni0.62Al0.38. , 2006, Physical review letters.

[26]  John A Gomez,et al.  Non-orthogonal multi-Slater determinant expansions in auxiliary field quantum Monte Carlo. , 2018, The Journal of chemical physics.

[27]  H. Tasman,et al.  Double‐Oven Experiments with Lithium Halide Vapors , 1962 .

[28]  Malcolm J. Cooper Compton scattering and electron momentum determination , 1985 .

[29]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[30]  F. Malone,et al.  Auxiliary-field quantum Monte Carlo calculations of the structural properties of nickel oxide. , 2018, The Journal of chemical physics.

[31]  J. E. Gubernatis,et al.  Constrained path Monte Carlo method for fermion ground states , 1997 .

[32]  Simons,et al.  Contribution of electron correlation to the stability of dipole-bound anionic states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[33]  Shiwei Zhang,et al.  Frozen-Orbital and Downfolding Calculations with Auxiliary-Field Quantum Monte Carlo. , 2013, Journal of chemical theory and computation.

[34]  M. Casula,et al.  Correlated geminal wave function for molecules: an efficient resonating valence bond approach. , 2004, The Journal of chemical physics.

[35]  Minsik Cho,et al.  Ab Initio Finite Temperature Auxiliary Field Quantum Monte Carlo. , 2018, Journal of chemical theory and computation.

[36]  Rodney J. Bartlett,et al.  Equation of motion coupled cluster method for electron attachment , 1995 .

[37]  M. Per,et al.  Density functional orbitals in quantum Monte Carlo: The importance of accurate densities. , 2019, The Journal of chemical physics.

[38]  Jaron T. Krogel,et al.  Nexus: A modular workflow management system for quantum simulation codes , 2016, Comput. Phys. Commun..

[39]  W. R. Garrett,et al.  Rotational states of dipole-bound anions of hydrogen cyanide , 2009 .

[40]  D. Ceperley The statistical error of green's function Monte Carlo , 1986 .

[41]  O. Heinonen,et al.  Compton profile of VO2 across the metal-insulator transition: Evidence of a non-Fermi liquid metal , 2019, Physical Review B.

[42]  H. Hiller In: Ullmann''''s Encyclopedia of Industrial Chemistry , 1989 .

[43]  Fan Wang,et al.  Performance of the Diffusion Quantum Monte Carlo Method with a Single-Slater-Jastrow Trial Wavefunction Using Natural Orbitals and Density Functional Theory Orbitals on Atomization Energies of the Gaussian-2 Set. , 2019, The journal of physical chemistry. A.

[44]  J. P. Remeika,et al.  Sharp-Line Fluorescence, Electron Paramagnetic Resonance, and Thermoluminescence of Mn 4+ in α-Al 2 O 3 , 1962 .

[45]  Ali Alavi,et al.  Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory. , 2016, Journal of chemical theory and computation.

[46]  Harold Basch,et al.  Compact effective potentials and efficient shared‐exponent basis sets for the first‐ and second‐row atoms , 1984 .

[47]  François Gygi,et al.  Architecture of Qbox: A scalable first-principles molecular dynamics code , 2008, IBM J. Res. Dev..

[48]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .

[49]  M. Motta,et al.  Computation of Ground-State Properties in Molecular Systems: Back-Propagation with Auxiliary-Field Quantum Monte Carlo. , 2017, Journal of chemical theory and computation.

[50]  Robert M Parrish,et al.  Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions. , 2012, The Journal of chemical physics.

[51]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[52]  S. Louie,et al.  Quasiparticle band gap of ZnO: high accuracy from the conventional G⁰W⁰ approach. , 2010, Physical review letters.

[53]  Wei Hu,et al.  Interpolative Separable Density Fitting through Centroidal Voronoi Tessellation with Applications to Hybrid Functional Electronic Structure Calculations. , 2017, Journal of chemical theory and computation.

[54]  A. Scemama,et al.  Excited States with Selected Configuration Interaction-Quantum Monte Carlo: Chemically Accurate Excitation Energies and Geometries , 2019, Journal of chemical theory and computation.

[55]  R. Assaraf,et al.  Optimizing the Energy with Quantum Monte Carlo: A Lower Numerical Scaling for Jastrow-Slater Expansions. , 2017, Journal of chemical theory and computation.

[56]  Fan Yang,et al.  Anomalously low electronic thermal conductivity in metallic vanadium dioxide , 2017, Science.

[57]  R. Needs,et al.  Shape and energy consistent pseudopotentials for correlated electron systems. , 2017, The Journal of chemical physics.

[58]  G. Collins The next generation. , 2006, Scientific American.

[59]  A. Scemama,et al.  Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo , 2019, Results in Chemistry.

[60]  Vamsee K Voora,et al.  Theoretical approaches for treating non-valence correlation-bound anions. , 2017, The Journal of chemical physics.

[61]  J. Turner,et al.  Ground-State Energy Eigenvalues and Eigenfunctions for an Electron in an Electric-Dipole Field , 1968 .

[62]  M. Cardona,et al.  Isotopic-mass dependence of the A, B, and C excitonic band gaps in ZnO at low temperatures , 2006 .

[63]  Shiwei Zhang,et al.  Auxiliary-field quantum Monte Carlo calculations with multiple-projector pseudopotentials , 2016, 1610.06267.

[64]  Rodney J. Bartlett,et al.  Coupled-cluster theory for excited electronic states: The full equation-of-motion coupled-cluster single, double, and triple excitation method , 2001 .

[65]  M. Brik,et al.  On the optical properties of the Mn4+ ion in solids , 2013 .

[66]  Henry Krakauer,et al.  Phaseless auxiliary-field quantum Monte Carlo calculations with plane waves and pseudopotentials : Applications to atoms and molecules , 2007, cond-mat/0702085.

[67]  B. Williams The Experimental Determination of Electron Momentum Densities , 1977 .

[68]  Anthony Scemama,et al.  Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs. , 2019, Journal of chemical theory and computation.

[69]  Tim Mueller,et al.  Investigation of a Quantum Monte Carlo Protocol To Achieve High Accuracy and High-Throughput Materials Formation Energies. , 2017, Journal of Chemical Theory and Computation.

[70]  A. Michaelides,et al.  Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods. , 2018, The journal of physical chemistry letters.

[71]  E. Neuscamman,et al.  Size Consistent Excited States via Algorithmic Transformations between Variational Principles. , 2017, Journal of chemical theory and computation.

[72]  John F. Stanton,et al.  A massively parallel tensor contraction framework for coupled-cluster computations , 2014, J. Parallel Distributed Comput..

[73]  P. A. Christiansen,et al.  Ab initio relativistic effective potentials with spin‐orbit operators. I. Li through Ar , 1985 .

[74]  N. Hiraoka,et al.  Electron momentum densities near Dirac cones: Anisotropic Umklapp scattering and momentum broadening , 2017, Scientific Reports.

[75]  Richard A Friesner,et al.  On Achieving High Accuracy in Quantum Chemical Calculations of 3 d Transition Metal-Containing Systems: A Comparison of Auxiliary-Field Quantum Monte Carlo with Coupled Cluster, Density Functional Theory, and Experiment for Diatomic Molecules. , 2019, Journal of chemical theory and computation.

[76]  S. Dugdale,et al.  Life on the edge: a beginner’s guide to the Fermi surface , 2016 .

[77]  Michele Casula Beyond the locality approximation in the standard diffusion Monte Carlo method , 2006 .

[78]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[79]  C. Umrigar,et al.  Time-Dependent Linear-Response Variational Monte Carlo , 2017, 1705.09813.

[80]  Matthew Otten,et al.  Fast semistochastic heat-bath configuration interaction. , 2018, The Journal of chemical physics.

[81]  Chao Yang,et al.  Interpolative Separable Density Fitting Decomposition for Accelerating Hybrid Density Functional Calculations with Applications to Defects in Silicon. , 2017, Journal of chemical theory and computation.

[82]  J. Gauss,et al.  Analytic energy derivatives for ionized states described by the equation‐of‐motion coupled cluster method , 1994 .

[83]  E. Neuscamman,et al.  An Efficient Variational Principle for the Direct Optimization of Excited States. , 2015, Journal of chemical theory and computation.

[84]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[85]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[86]  W. C. Lineberger,et al.  Autodetachment spectroscopy and dynamics of vibrationally excited dipole‐bound states of H2CCC− , 1996 .

[87]  C. Melton,et al.  A new generation of effective core potentials from correlated calculations: 3d transition metal series. , 2018, The Journal of chemical physics.

[88]  David M. Ceperley,et al.  Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods , 2017, 1705.01608.

[89]  M. Gutowski,et al.  Electron binding energies of dipole-bound anions at the coupled cluster level with single, double, and triple excitations: HCN− and HNC− , 2002 .

[90]  M. Dubecký Noncovalent Interactions by Fixed-Node Diffusion Monte Carlo: Convergence of Nodes and Energy Differences vs Gaussian Basis-Set Size. , 2017, Journal of chemical theory and computation.

[91]  Gustavo E Scuseria,et al.  Computing the energy of a water molecule using multideterminants: a simple, efficient algorithm. , 2011, The Journal of chemical physics.

[92]  M. Casula,et al.  Fate of the open-shell singlet ground state in the experimentally accessible acenes: A quantum Monte Carlo study. , 2018, The Journal of chemical physics.

[93]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[94]  M. C. Bennett,et al.  A new generation of effective core potentials from correlated calculations: 4s and 4p main group elements and first row additions. , 2019, The Journal of chemical physics.

[95]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[96]  R. N. West,et al.  Positron annihilation and Fermi surface studies: a new approach , 1973 .

[97]  J. Simons,et al.  Ab initio electronic structure of anions , 1987 .

[98]  O. Crawford Bound states of a charged particle in a dipole field , 1967 .

[99]  Schermann,et al.  From 1/r to 1/r2 potentials: Electron exchange between Rydberg atoms and polar molecules. , 1994, Physical review letters.

[100]  Fan Wang,et al.  Diffusion quantum Monte Carlo calculations with a recent generation of effective core potentials for ionization potentials and electron affinities , 2019 .

[101]  G. MacDougall,et al.  Prediction for the singlet-triplet excitation energy for the spinel MgTi2O4 using first-principles diffusion Monte Carlo , 2018, Physical Review B.

[102]  G. Kroes,et al.  Density functional embedding for periodic and nonperiodic diffusion Monte Carlo calculations , 2018, Physical Review B.

[103]  C J Umrigar,et al.  Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling. , 2016, Journal of chemical theory and computation.

[104]  Robert M Parrish,et al.  Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory. , 2012, The Journal of chemical physics.

[105]  C J Umrigar,et al.  Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules. , 2008, The Journal of chemical physics.

[106]  M. G. Medvedev,et al.  Density functional theory is straying from the path toward the exact functional , 2017, Science.

[107]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[108]  Shiwei Zhang,et al.  Quantum Monte Carlo method for the ground state of many-boson systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[110]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[111]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[112]  Phani K V V Nukala,et al.  A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations. , 2009, The Journal of chemical physics.

[113]  Katherine Yelick,et al.  Exascale applications: skin in the game , 2020, Philosophical Transactions of the Royal Society A.

[114]  Robert M Parrish,et al.  Tensor hypercontraction. II. Least-squares renormalization. , 2012, The Journal of chemical physics.

[115]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[116]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[117]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[118]  J. Schneider,et al.  Three-dimensional electron momentum densities of solids , 2001 .

[119]  M. C. Bennett,et al.  A new generation of effective core potentials from correlated calculations: 2nd row elements. , 2018, The Journal of chemical physics.

[120]  D. Reichman,et al.  Finite-temperature auxiliary-field quantum Monte Carlo technique for Bose-Fermi mixtures , 2012, 1209.0186.

[121]  Henry Krakauer,et al.  Quantum Monte Carlo method using phase-free random walks with slater determinants. , 2003, Physical review letters.

[122]  Ying Wai Li,et al.  QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[123]  Henry Krakauer,et al.  Assessing weak hydrogen binding on Ca+ centers: an accurate many-body study with large basis sets. , 2011, The Journal of chemical physics.

[124]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[125]  Hongxia Hao,et al.  Accurate Predictions of Electron Binding Energies of Dipole-Bound Anions via Quantum Monte Carlo Methods. , 2018, The journal of physical chemistry letters.

[126]  Peter Lindner Theoretical Momentum Densities , 1977 .

[127]  Michel Caffarel,et al.  Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule. , 2016, The Journal of chemical physics.

[128]  Markus Holzmann,et al.  Iterative backflow renormalization procedure for many-body ground-state wave functions of strongly interacting normal Fermi liquids , 2015, 1501.02199.

[129]  Eric Neuscamman,et al.  Excitation variance matching with limited configuration interaction expansions in variational Monte Carlo. , 2017, The Journal of chemical physics.

[130]  G. Scuseria,et al.  Analytic energy gradient for the projected Hartree-Fock method. , 2014, The Journal of chemical physics.

[131]  E. Neuscamman,et al.  Variational Excitations in Real Solids: Optical Gaps and Insights into Many-Body Perturbation Theory. , 2019, Physical review letters.

[132]  F. Becca Quantum Monte Carlo Approaches for Correlated Systems , 2017 .

[133]  T. Dunning,et al.  Basis Sets: Correlation Consistent Sets , 2002 .

[134]  Shiwei Zhang FINITE-TEMPERATURE MONTE CARLO CALCULATIONS FOR SYSTEMS WITH FERMIONS , 1999, cond-mat/9909091.

[135]  Claudia Filippi,et al.  Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations. , 2008, The Journal of chemical physics.

[136]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[137]  Shiwei Zhang,et al.  Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures , 2018, Physical Review B.

[138]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[139]  P. Reynolds,et al.  Valence quantum Monte Carlo with ab initio effective core potentials , 1987 .

[140]  Takashi Tsuchimochi,et al.  Projected Hartree-Fock theory. , 2012, The Journal of chemical physics.

[141]  M. Shishkin,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .

[142]  Lexing Ying,et al.  Compression of the electron repulsion integral tensor in tensor hypercontraction format with cubic scaling cost , 2014, J. Comput. Phys..

[143]  Paul M Zimmerman,et al.  Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction. , 2018, The journal of physical chemistry. A.

[144]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[145]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[146]  K. Jordan,et al.  Theory of dipole-bound anions. , 2003, Annual review of physical chemistry.

[147]  A. Scemama,et al.  Accurate nonrelativistic ground-state energies of 3d transition metal atoms. , 2014, The Journal of chemical physics.

[148]  A. Michaelides,et al.  A new scheme for fixed node diffusion quantum Monte Carlo with pseudopotentials: Improving reproducibility and reducing the trial-wave-function bias. , 2019, The Journal of chemical physics.

[149]  Mario Motta,et al.  Ab initio computations of molecular systems by the auxiliary‐field quantum Monte Carlo method , 2017, 1711.02242.

[150]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[151]  A. Scemama,et al.  Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes. , 2018, The Journal of chemical physics.

[152]  J. Hubbard Calculation of Partition Functions , 1959 .

[153]  Michel Caffarel,et al.  Using perturbatively selected configuration interaction in quantum Monte Carlo calculations , 2013 .

[154]  Jeongnim Kim,et al.  Multideterminant Wave Functions in Quantum Monte Carlo. , 2012, Journal of chemical theory and computation.