Probabilistic Adaptive Crossover (PAX): a Novel Genetic Algorithm Crossover Methodology

A new crossover technique for genetic algorithms is proposed in this paper. The technique is called probabilistic adaptive crossover and denoted by PAX. The method includes the estimation of the probability distribution of the population, in order to store in a unique probability vector P information about the best and the worse solutions of the problem to be solved. The proposed methodology is compared with six crossover techniques namely: one-point crossover, two-point crossover, SANUX, discrete crossover, uniform crossover and selective crossover. These methodologies were simulated and compared over five test problems described by ONEMAX Function, Royal Road Function, Random L-MaxSAT, Bohachevsky Function, and the Himmelblau Function.

[1]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[2]  H. Mühlenbein,et al.  Gene Pool Recombination in Genetic Algorithms , 1996 .

[3]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[4]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[5]  K Vekaria,et al.  Selective crossover in genetic algorithms , 1998 .

[6]  Tony White,et al.  Adaptive Crossover Using Automata , 1994, PPSN.

[7]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[8]  Kanta Premji Vekaria,et al.  Selective crossover as an adaptive strategy for genetic algorithms , 2000 .

[9]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[10]  David H. Ackley,et al.  An empirical study of bit vector function optimization , 1987 .

[11]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[12]  Gilbert Syswerda,et al.  Simulated Crossover in Genetic Algorithms , 1992, FOGA.

[13]  Peter Ross,et al.  Fast Practical Evolutionary Timetabling , 1994, Evolutionary Computing, AISB Workshop.

[14]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[15]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[16]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Shengxiang Yang,et al.  Adaptive Non-uniform Crossover Based On Statistics For Genetic Algorithms , 2002, GECCO.

[19]  Christopher D. Clack,et al.  Royal Road Encodings and Schema Propagation in Selective Crossover , 2000 .

[20]  Peter J. Fleming,et al.  The MATLAB genetic algorithm toolbox , 1995 .

[21]  Kenneth A. De Jong,et al.  Using Problem Generators to Explore the Effects of Epistasis , 1997, ICGA.

[22]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[23]  Sushil J. Louis,et al.  Designer Genetic Algorithms: Genetic Algorithms in Structure Design , 1991, ICGA.

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[25]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[26]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[27]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[28]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[29]  Manuel A. Duarte-Mermoud,et al.  Feature selection algorithms using Chilean wine chromatograms as examples , 2005 .

[30]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Heinz Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions II. Continuous Parameters , 1996, PPSN.

[33]  William M. Spears,et al.  Adapting Crossover in a Genetic Algorithm , 2007 .

[34]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[35]  Panayiotis E. Pintelas,et al.  Restartings: A Technique to Improve Classic Genetic Algorithms' Performance , 2007, International Conference on Computational Intelligence.

[36]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[37]  S. A. Salah,et al.  Feature extraction and classification of Chilean wines , 2006 .

[38]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[39]  William M. Spears,et al.  The role of mutation and recombination in evolutionary algorithms , 1998 .

[40]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .