Cerebral cortical folding analysis with multivariate modeling and testing: Studies on gender differences and neonatal development

This paper presents a novel statistical framework for human cortical folding pattern analysis that relies on a rich multivariate descriptor of folding patterns in a region of interest (ROI). The ROI-based approach avoids problems faced by spatial normalization-based approaches stemming from the deficiency of homologous features between typical human cerebral cortices. Unlike typical ROI-based methods that summarize folding by a single number, the proposed descriptor unifies multiple characteristics of surface geometry in a high-dimensional space (hundreds/thousands of dimensions). In this way, the proposed framework couples the reliability of ROI-based analysis with the richness of the novel cortical folding pattern descriptor. This paper presents new mathematical insights into the relationship of cortical complexity with intra-cranial volume (ICV). It shows that conventional complexity descriptors implicitly handle ICV differences in different ways, thereby lending different meanings to "complexity". The paper proposes a new application of a nonparametric permutation-based approach for rigorous statistical hypothesis testing with multivariate cortical descriptors. The paper presents two cross-sectional studies applying the proposed framework to study folding differences between genders and in neonates with complex congenital heart disease. Both studies lead to novel interesting results.

[1]  M I Levene,et al.  Cerebral maturation in premature infants: quantitative assessment using MR imaging. , 2001, AJNR. American journal of neuroradiology.

[2]  Yuan Qi,et al.  Cortical Surface Shape Analysis Based on Spherical Wavelets , 2007, IEEE Transactions on Medical Imaging.

[3]  Laurent D. Cohen,et al.  Geodesic Remeshing Using Front Propagation , 2003, International Journal of Computer Vision.

[4]  D. V. van Essen,et al.  Cortical Folding Abnormalities in Autism Revealed by Surface-Based Morphometry , 2007, The Journal of Neuroscience.

[5]  A.D. Hughes,et al.  Improvement of a retinal blood vessel segmentation method using the Insight Segmentation and Registration Toolkit (ITK) , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[6]  E. Duchesnay,et al.  A framework to study the cortical folding patterns , 2004, NeuroImage.

[7]  Suyash P. Awate,et al.  Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification , 2006, Medical Image Anal..

[8]  S. Majumdar,et al.  The fractal dimension of cerebral surfaces using magnetic resonance images , 1988 .

[9]  Lewis D. Griffin The intrinsic geometry of the cerebral cortex. , 1994, Journal of theoretical biology.

[10]  A. Schleicher,et al.  The ontogeny of human gyrification. , 1995, Cerebral cortex.

[11]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[12]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[13]  R. A. Fisher,et al.  Design of Experiments , 1936 .

[14]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[15]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[16]  Michael I. Miller,et al.  Differential geometry of the cortical surface , 1995, Optics & Photonics.

[17]  Gil Wernovsky,et al.  Brain maturation is delayed in infants with complex congenital heart defects. , 2009, The Journal of thoracic and cardiovascular surgery.

[18]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[19]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[20]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[21]  Ross T. Whitaker,et al.  A Level-Set Approach to 3D Reconstruction from Range Data , 1998, International Journal of Computer Vision.

[22]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[23]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[24]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[25]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[26]  Alan C. Evans,et al.  Searching scale space for activation in PET images , 1996, Human brain mapping.

[27]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[28]  Suyash P. Awate,et al.  Multivariate High-Dimensional Cortical Folding Analysis, Combining Complexity and Shape, in Neonates with Congenital Heart Disease , 2009, IPMI.

[29]  R A Zimmerman,et al.  MR of the cerebral operculum: abnormal opercular formation in infants and children. , 1996, AJNR. American journal of neuroradiology.

[30]  Zudi Lu,et al.  Spatial kernel regression estimation: weak consistency. , 2004 .

[31]  Suyash P. Awate,et al.  A Tract-Specific Framework for White Matter Morphometry Combining Macroscopic and Microscopic Tract Features , 2009, MICCAI.

[32]  A. Schleicher,et al.  The human pattern of gyrification in the cerebral cortex , 2004, Anatomy and Embryology.

[33]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[34]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[35]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[36]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[37]  N. Makris,et al.  A methodology for analyzing curvature in the developing brain from preterm to adult , 2008, Int. J. Imaging Syst. Technol..

[38]  Alan C. Evans,et al.  Brain size and cortical structure in the adult human brain. , 2008, Cerebral cortex.

[39]  D. V. Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system , 1997, Nature.

[40]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[41]  Colin Studholme,et al.  A framework for in vivo quantification of regional brain folding in premature neonates , 2008, NeuroImage.

[42]  Derek K. Jones,et al.  The effect of filter size on VBM analyses of DT-MRI data , 2005, NeuroImage.

[43]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[44]  T. Paus,et al.  Brain size and folding of the human cerebral cortex. , 2008, Cerebral cortex.

[45]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[46]  Suyash P. Awate,et al.  A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: with applications to DTI-tract extraction. , 2007, IEEE transactions on medical imaging.

[47]  S. Geman,et al.  Consistent Cross-Validated Density Estimation , 1983 .

[48]  David J. Hawkes,et al.  Measures of folding applied to the development of the human fetal brain , 2002, IEEE Transactions on Medical Imaging.

[49]  Robert T. Schultz,et al.  3D Cerebral Cortical Morphometry in Autism: Increased Folding in Children and Adolescents in Frontal, Parietal, and Temporal Lobes , 2008, MICCAI.

[50]  Guido Gerig,et al.  Effects of Healthy Aging Measured By Intracranial Compartment Volumes Using a Designed MR Brain Database , 2005, MICCAI.

[51]  Bostjan Likar,et al.  Intensity inhomogeneity correction of multispectral MR images , 2006, NeuroImage.

[52]  Eileen Luders,et al.  Gender differences in cortical complexity , 2004, Nature Neuroscience.

[53]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[54]  Guido Gerig,et al.  Correction scheme for multiple correlated statistical tests in local shape analysis , 2004, SPIE Medical Imaging.

[55]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[56]  D. Louis Collins,et al.  Twenty New Digital Brain Phantoms for Creation of Validation Image Data Bases , 2006, IEEE Transactions on Medical Imaging.

[57]  R. Woods,et al.  Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. , 2007, Cerebral cortex.

[58]  Steven Robbins,et al.  An unbiased iterative group registration template for cortical surface analysis , 2007, NeuroImage.

[59]  Suyash P. Awate,et al.  Clinical Neonatal Brain MRI Segmentation Using Adaptive Nonparametric Data Models and Intensity-Based Markov Priors , 2007, MICCAI.

[60]  P. Ellen Grant,et al.  Shape Analysis with Overcomplete Spherical Wavelets , 2008, MICCAI.

[61]  R. W. Morgan,et al.  How to design an experiment. , 1966, Annals of physical medicine.

[62]  Daniel B Vigneron,et al.  Abnormal brain development in newborns with congenital heart disease. , 2007, The New England journal of medicine.

[63]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[64]  Suyash P. Awate,et al.  Gender Differences in Cerebral Cortical Folding: Multivariate Complexity-Shape Analysis with Insights into Handling Brain-Volume Differences , 2009, MICCAI.

[65]  J. Gee,et al.  Geodesic estimation for large deformation anatomical shape averaging and interpolation , 2004, NeuroImage.

[66]  Jerry L. Prince,et al.  An active contour model for mapping the cortex , 1995, IEEE Trans. Medical Imaging.

[67]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .