Estimation Illumination Chromaticity

Color constancy is important for pattern recognition and image understanding. Based on simplified BRDF model, we use voting method to detect the high light areas. Then the pixels in the high light areas are projected to the inverse-intensity space. In the inverse-intensity space, the correlation of image chromaticity, inverse-intensity, and illumination chromaticity is linear. So we can estimate the Illumination chromaticity. The experiments demonstrate that our algorithm have no limit on the objects' material and texture and contain the color constancy after the illumination chromaticity correction.

[1]  John J. McCann,et al.  Mechanism of Color Constancy , 2004, Color Imaging Conference.

[2]  M. D'Zmura Color constancy : surface color from changing illumination , 1992 .

[3]  K. Hohn,et al.  Determining Lightness from an Image , 2004 .

[4]  G. D. Finlayson Convex and non-convex illumination constraints for dichromatic color constancy , 2001, CVPR 2001.

[5]  Gerald Schaefer,et al.  Solving for Colour Constancy using a Constrained Dichromatic Reflection Model , 2001, International Journal of Computer Vision.

[6]  Takeo Kanade,et al.  The measurement of highlights in color images , 1988, International Journal of Computer Vision.

[7]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  Arnold W. M. Smeulders,et al.  A Physical Basis for Color Constancy , 2002, CGIV.

[10]  M. J. Luque,et al.  Implementations of a novel algorithm for colour constancy , 1997, Vision Research.

[11]  In So Kweon,et al.  Voting-based separation of diffuse and specular pixels , 2004 .

[12]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[13]  Katsushi Ikeuchi,et al.  Illumination chromaticity estimation using inverse-intensity chromaticity space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[14]  H C Lee,et al.  Method for computing the scene-illuminant chromaticity from specular highlights. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[15]  D. Brainard,et al.  Color constancy in the nearly natural image. 2. Achromatic loci. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[17]  T M Lehmann,et al.  Color line search for illuminant estimation in real-world scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[19]  Brian V. Funt,et al.  Color constancy under varying illumination , 1995, Proceedings of IEEE International Conference on Computer Vision.

[20]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Brian V. Funt,et al.  Colour by Correlation in a Three-Dimensional Colour Space , 2000, ECCV.

[22]  David A. Forsyth,et al.  A novel algorithm for color constancy , 1990, International Journal of Computer Vision.

[23]  G D Finlayson,et al.  Color constancy at a pixel. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.