A systematic and efficient simulation scheme for the Greeks of financial derivatives

Greeks are the price sensitivities of financial derivatives and are essential for pricing, speculation, risk management, and model calibration. Although the pathwise method has been popular for calculating them, its applicability is problematic when the integrand is discontinuous. To tackle this problem, this paper defines and derives the parameter derivative of a discontinuous integrand of certain functional forms with respect to the parameter of interest. The parameter derivative is such that its integration equals the differentiation of the integration of the aforesaid discontinuous integrand with respect to that parameter. As a result, unbiased Greek formulas for a very broad class of payoff functions and models can be systematically derived. This new method is applied to the Greeks of (1) Asian options under two popular Lévy processes, i.e. Merton's jump-diffusion model and the variance-gamma process, and (2) collateralized debt obligations under the Gaussian copula model. Our Greeks outperform the finite-difference and likelihood ratio methods in terms of accuracy, variance, and computation time.

[1]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[2]  Sheldon M. Ross Chapter 12 – Markov Chain Monte Carlo Methods , 2013 .

[3]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[4]  David X. Li On Default Correlation , 2000 .

[5]  Jun Luo,et al.  Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo , 2014, INFORMS J. Comput..

[6]  Philippe Jorion On Jump Processes in the Foreign Exchange and Stock Markets , 1988 .

[7]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[8]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[9]  tsushi,et al.  Sensitivity Analysis for Averaged Asset Price Dynamics with Gamma Processes , 2009 .

[10]  Leyuan Shi Discontinuous perturbation analysis of discrete-event dynamic systems , 1996, IEEE Trans. Autom. Control..

[11]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[12]  T. Vorst,et al.  The Binomial Model and the Greeks , 1994 .

[13]  Ray Kawai,et al.  Sensitivity analysis for averaged asset price dynamics with gamma processes , 2010 .

[14]  B. Heidergott OPTION PRICING VIA MONTE CARLO SIMULATION , 2001, Probability in the Engineering and Informational Sciences.

[15]  Paul Glasserman,et al.  Sensitivity estimates for portfolio credit derivatives using Monte Carlo , 2008, Finance Stochastics.

[16]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[17]  P. Schönbucher Credit Derivatives Pricing Models: Models, Pricing and Implementation , 2003 .

[18]  Guido Germano,et al.  Full and fast calibration of the Heston stochastic volatility model , 2015, Eur. J. Oper. Res..

[19]  Xi-Ren Cao Convergence of parameter sensitivity estimates in a stochastic experiment , 1984, The 23rd IEEE Conference on Decision and Control.

[20]  L. Jeff Hong,et al.  Kernel Estimation of the Greeks for Options with Discontinuous Payoffs , 2011, Oper. Res..

[21]  R. Strichartz A Guide to Distribution Theory and Fourier Transforms , 1994 .

[22]  S. Jaimungal,et al.  Catastrophe options with stochastic interest rates and compound Poisson losses , 2006 .

[23]  Mark H. A. Davis,et al.  Malliavin Monte Carlo Greeks for jump diffusions , 2006 .

[24]  P. Glasserman,et al.  Estimating Greeks in simulating Lévy-driven models , 2010 .

[25]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[26]  Michael C. Fu,et al.  Sensitivity Analysis for Monte Carlo Simulation of Option Pricing , 1995, Probability in the Engineering and Informational Sciences.

[27]  P. Glasserman,et al.  Estimating security price derivatives using simulation , 1996 .

[28]  Yongqiang Wang,et al.  A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives , 2012, Oper. Res..

[29]  M. Joshi,et al.  Rapid and accurate development of prices and Greeks for nth to default credit swaps in the Li model , 2004 .

[30]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[31]  Christian P. Fries,et al.  Partial Proxy Simulation Schemes for Generic and Robust Monte-Carlo Greeks , 2006 .

[32]  R. Kawai,et al.  GREEKS FORMULAS FOR AN ASSET PRICE MODEL WITH GAMMA PROCESSES , 2010 .

[33]  H. Thompson,et al.  Jump‐Diffusion Processes and the Term Structure of Interest Rates , 1988 .

[34]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[35]  Jeff Fleming,et al.  Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[36]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[37]  M. Joshi,et al.  FAST MONTE CARLO GREEKS FOR FINANCIAL PRODUCTS WITH DISCONTINUOUS PAY‐OFFS , 2013 .

[38]  P. Glasserman,et al.  Malliavin Greeks without Malliavin calculus , 2007 .

[39]  Bernd Heidergott,et al.  Weak Differentiability of Product Measures , 2010, Math. Oper. Res..

[40]  E. Gobet,et al.  Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options , 2003 .

[41]  Yuh-Dauh Lyuu,et al.  Unbiased and efficient Greeks of financial options , 2011, Finance Stochastics.

[42]  Samuel H. Cox,et al.  Catastrophe Risk Bonds , 2000 .

[43]  Mark S. Joshi,et al.  An Exact Method for the Sensitivity Analysis of Systems Simulated by Rejection Techniques , 2014, Eur. J. Oper. Res..

[44]  Á. Cartea,et al.  Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality , 2005 .

[45]  Pierre L'Ecuyer,et al.  Efficiency improvement and variance reduction , 1994, Proceedings of Winter Simulation Conference.

[46]  George T. Gilber Positive definite matrices and Sylvester's criterion , 1991 .