SYSTEMATIC KERNELIZATION IN FPT ALGORITHM DESIGN

Data reduction is a preprocessing technique which makes huge and seemingly intractable instances of a problem small and tractable. This technique is often acknowledged as one of the most powerful methods to cope with the intractability of certain NP-complete problems. Heuristics for reducing data can often be seen as reduction rules, if considered from a parameterized complexity viewpoint. Using reduction rules to transform the instances of a parameterized problem into equivalent instances, with size bounded by a function of the parameter, is known as kernelization. This thesis introduces and develops an approach to designing FPT algorithms based on effective kernelizations. This method is called the method of extremal structure. The method operates following a paradigm presented by two lemmas, the kernelization and boundary lemmas. The boundary lemma is used to find theoretical bounds on the maximum size of an instance reduced under an adequate set of reduction rules. The kernelization lemma is invoked to decide the instances which are larger than for some function depending only on the parameter . The first aim of the method of extremal structure is to provide a systematic way to discover reduction rules for fixed-parameter tractable problems. The second is to devise an analytical way to find theoretical bounds for the size of kernels for those problems. These two aims are achieved with the aid of combinatorial extremal arguments. Furthermore, this thesis shows how the method of extremal structure can be applied to effectively solve several NP-complete problems, namely MAX CUT, MAX LEAF SPANNING TREE, NONBLOCKER, -STAR PACKING, EDGE-DISJOINT TRIANGLE PACKING, MAX INTERNAL SPANNING TREE and MINIMUM MAXIMAL MATCHING.

[1]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[2]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[3]  Michael R. Fellows,et al.  Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.

[4]  Gerhard J. Woeginger,et al.  VC-Dimensions for Graphs (Extended Abstract) , 1995, WG.

[5]  Bruce A. Reed Paths, Stars and the Number Three , 1996, Comb. Probab. Comput..

[6]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[7]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[8]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[9]  Michael R. Fellows,et al.  An Improved Fixed-Parameter Algorithm for Vertex Cover , 1998, Inf. Process. Lett..

[10]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[11]  Liming Cai,et al.  Advice Classes of Parameterized Tractability , 1997, Ann. Pure Appl. Log..

[12]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[13]  Catherine McCartin,et al.  CONTRIBUTIONS TO PARAMETERIZED COMPLEXITY , 2003 .

[14]  Vineet Bafna,et al.  Genome rearrangements and sorting by reversals , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[15]  F. Bruce Shepherd,et al.  Domination in graphs with minimum degree two , 1989, J. Graph Theory.

[16]  Gerhard J. Woeginger,et al.  A Faster FPT Algorithm for Finding Spanning Trees with Many Leaves , 2003, MFCS.

[17]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[18]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[19]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[20]  Raphael Yuster,et al.  Connected Domination and Spanning Trees with Many Leaves , 2000, SIAM J. Discret. Math..

[21]  Viggo Kann,et al.  Maximum Bounded H-Matching is MAX SNP-Complete , 1994, Inf. Process. Lett..

[22]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2002, Theor. Comput. Sci..

[23]  Mam Riess Jones Color Coding , 1962, Human factors.

[24]  Rolf Niedermeier,et al.  A general method to speed up fixed-parameter-tractable algorithms , 2000, Inf. Process. Lett..

[25]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[26]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[27]  Paul D. Seymour,et al.  Spanning trees with many leaves , 2001, J. Graph Theory.

[28]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[29]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[30]  Gerhard J. Woeginger,et al.  Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.

[31]  Rolf Niedermeier,et al.  Upper Bounds for Vertex Cover Further Improved , 1999, STACS.

[32]  Ulrike Stege,et al.  Solving large FPT problems on coarse-grained parallel machines , 2003, J. Comput. Syst. Sci..

[33]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[34]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[35]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[36]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[37]  Francesco Maffioli,et al.  A Short Note on the Approximability of the Maximum Leaves Spanning Tree Problem , 1994, Inf. Process. Lett..

[38]  R. Ravi,et al.  Approximating Maximum Leaf Spanning Trees in Almost Linear Time , 1998, J. Algorithms.

[39]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[40]  Rolf Niedermeier,et al.  Refined Search Tree Technique for DOMINATING SET on Planar Graphs , 2001, MFCS.

[41]  Bhaskar Krishnamachari,et al.  Distributed Constraint Satisfaction in a Wireless Sensor Tracking System , 2001 .

[42]  Ulrike Stege,et al.  Resolving conflicts in problems from computational biology , 1999 .

[43]  Dimitrios M. Thilikos,et al.  Faster Fixed-Parameter Tractable Algorithms for Matching and Packing Problems , 2004, ESA.

[44]  Michael R. Fellows,et al.  On Well-Partial-Order Theory and its Application to Combinatorial Problems of VLSI Design , 1989, SIAM J. Discret. Math..

[45]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[46]  Mihalis Yannakakis,et al.  On the Complexity of Protein Folding , 1998, J. Comput. Biol..

[47]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[48]  Rolf Niedermeier,et al.  Efficient Data Reduction for DOMINATING SET: A Linear Problem Kernel for the Planar Case , 2002, SWAT.

[49]  Elena Prieto The Method of Extremal Structure on the k-Maximum Cut Problem , 2005, CATS.

[50]  Gerhard J. Woeginger,et al.  Vc-Dimensions For Graphs , 1994 .

[51]  Michael R. Fellows,et al.  Finding k Disjoint Triangles in an Arbitrary Graph , 2004, WG.

[52]  Faisal N. Abu-Khzam,et al.  Fast, effective vertex cover kernelization: a tale of two algorithms , 2005, The 3rd ACS/IEEE International Conference onComputer Systems and Applications, 2005..

[53]  Michael R. Fellows,et al.  An FPT Algorithm for Set Splitting , 2003, WG.

[54]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[55]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[56]  Rolf Niedermeier,et al.  Graph-Modeled Data Clustering: Fixed-Parameter Algorithms for Clique Generation , 2003, CIAC.

[57]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[58]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests and Depth First Search , 1989, WADS.

[59]  Michael R. Fellows,et al.  Greedy Localization, Iterative Compression, Modeled Crown Reductions: New FPT Techniques, an Improved Algorithm for Set Splitting, and a Novel 2k Kernelization for Vertex Cover , 2004, IWPEC.

[60]  Erik D. Demaine,et al.  Exponential Speedup of Fixed-Parameter Algorithms for Classes of Graphs Excluding Single-Crossing Graphs as Minors , 2005, Algorithmica.

[61]  Michael R. Fellows,et al.  Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments , 2004, ALENEX/ANALC.

[62]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[63]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[64]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[65]  Rolf Niedermeier,et al.  A refined search tree technique for Dominating Set on planar graphs , 2005, J. Comput. Syst. Sci..

[66]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[67]  Giuseppe Lancia,et al.  Practical Algorithms and Fixed-Parameter Tractability for the Single Individual SNP Haplotyping Problem , 2002, WABI.

[68]  Miroslav Chlebík,et al.  Approximation Hardness of Minimum Edge Dominating Set and Minimum Maximal Matching , 2003, ISAAC.

[69]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2004, J. Algorithms.

[70]  Alexander Schrijver,et al.  On the Size of Systems of Sets Every t of Which Have an SDR, with an Application to the Worst-Case Ratio of Heuristics for Packing Problems , 1989, SIAM J. Discret. Math..

[71]  Robert E. Tarjan,et al.  Dominating Sets in Planar Graphs , 1996, Eur. J. Comb..

[72]  Michael R. Fellows,et al.  Coordinatized Kernels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf Spanning Tree and Other Problems , 2000, FSTTCS.

[73]  Sanjiv Kapoor,et al.  Algorithms for Generating All Spanning Trees of Undirected, Directed and Weighted Graphs , 1991, WADS.

[74]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[75]  Luca Trevisan,et al.  On the Efficiency of Polynomial Time Approximation Schemes , 1997, Inf. Process. Lett..

[76]  Marek Karpinski,et al.  Polynomial time approximation schemes for dense instances of NP-hard problems , 1995, STOC '95.

[77]  Peter Shaw,et al.  Packing Edge Disjoint Triangles: A Parameterized View , 2004, IWPEC.

[78]  Phokion G. Kolaitis,et al.  Approximation properties of NP minimization classes , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[79]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[80]  R. Downey,et al.  Parameterized Computational Feasibility , 1995 .

[81]  R. Battiti,et al.  Covering Trains by Stations or the Power of Data Reduction , 1998 .

[82]  Rolf Niedermeier,et al.  Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT , 2003, Discret. Appl. Math..

[83]  R. Ravi,et al.  Approximation algorithms for the test cover problem , 2003, Math. Program..

[84]  Ian Holyer,et al.  The NP-Completeness of Some Edge-Partition Problems , 1981, SIAM J. Comput..

[85]  Erik D. Demaine,et al.  Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.

[86]  Pablo Moscato,et al.  The k-FEATURE SET problem is W[2]-complete , 2003, J. Comput. Syst. Sci..

[87]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[88]  Michael R. Fellows,et al.  Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT , 2003, WG.

[89]  Rolf Niedermeier,et al.  Improved Fixed-Parameter Algorithms for Two Feedback Set Problems , 2005, WADS.

[90]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[91]  Christian Sloper,et al.  Either/Or: Using Vertex Cover Structure in Designing FPT-Algorithms - The Case of k-Internal Spanning Tree , 2003, WADS.

[92]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[93]  Michele A. A. Zito,et al.  Randomised techniques in combinatorial algorithmics , 1999 .

[94]  Dimitrios M. Thilikos,et al.  Dominating Sets and Local Treewidth , 2003, ESA.

[95]  Christian Sloper,et al.  Looking at the stars , 2004, Theor. Comput. Sci..

[96]  Liming Cai,et al.  On Fixed-Parameter Tractability and Approximability of NP Optimization Problems , 1997, J. Comput. Syst. Sci..

[97]  Fabrizio Grandoni,et al.  Refined Memorisation for Vertex Cover , 2004, IWPEC.

[98]  Michael R. Fellows,et al.  On the parametric complexity of schedules to minimize tardy tasks , 2003, Theor. Comput. Sci..

[99]  Rajeev Motwani,et al.  On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[100]  Michael R. Fellows,et al.  Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.

[101]  Alberto Caprara,et al.  Packing triangles in bounded degree graphs , 2002, Inf. Process. Lett..

[102]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[103]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[104]  Mark Dras,et al.  A Two-Pronged Attack on the Dragon of Intractability , 2005, ACSC.

[105]  Francesco Maffioli,et al.  On the Approximability of Some Maximum Spanning Tree Problems , 1995, Theor. Comput. Sci..