Visual system of calliphorid flies: Motion‐ and orientation‐sensitive visual interneurons supplying dorsal optic glomeruli

Intracellular recordings accompanied by dye fills were made from neurons associated with optic glomeruli in the lateral protocerebrum of the brain of the blowfly Phaenicia sericata. The present account describes the morphology of these cells and their electrophysiological responses to oriented bar motion. The most dorsal glomeruli are each supplied by retinotopic efferent neurons that have restricted dendritic fields in the lobula and lobula plate of the optic lobes. Each of these lobula complex cells represents a morphologically identified type of neuron arranged as an ensemble that subtends the entire monocular visual field. Of the four recorded and filled efferent types, three were broadly tuned to the orientation of bar stimuli. At the level of optic glomeruli a relay neuron extending centrally from optic foci and a local interneuron that arborizes among glomeruli showed narrow tuning to oriented bar motion. The present results are discussed with respect to the behavioral significance of oriented motion discrimination by flies and other insects, and with respect to neuroanatomical data demonstrating the organization of deep visual neuropils. J. Comp. Neurol. 500:189–208, 2007. © 2006 Wiley‐Liss, Inc.

[1]  J. H. van Hateren,et al.  Pattern recognition in bees: orientation discrimination , 1990, Journal of Comparative Physiology A.

[2]  Mandyam V. Srinivasan,et al.  Freely flying bees discriminate between stationary and moving objects: performance and possible mechanisms , 2004, Journal of Comparative Physiology A.

[3]  A. C. James,et al.  Characterisation of columnar neurons and visual signal processing in the medulla of the locust optic lobe by system identification techniques , 1996, Journal of Comparative Physiology A.

[4]  J J Milde,et al.  Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways , 1995, The Journal of comparative neurology.

[5]  N. Strausfeld,et al.  Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa , 2003, The Journal of comparative neurology.

[6]  Nicholas J. Strausfeld,et al.  Beneath the Compound Eye: Neuroanatomical Analysis and Physiological Correlates in the Study of Insect Vision , 1989 .

[7]  M. Srinivasan,et al.  Visual Discrimination of Pattern Orientation by Honeybees: Performance and Implications for `Cortical' Processing , 1994 .

[8]  B. Heller Circular Statistics in Biology, Edward Batschelet. Academic Press, London & New York (1981), 371, Price $69.50 , 1983 .

[9]  Christian Wehrhahn Ocellar vision and orientation in flies , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  C. Rica.,et al.  Functional Significance of the Capitate Supra-Fronto Orbital Bristles of Male Medflies (Ceratitis capitata) (D?ptera, Tephritidae) , 1998 .

[11]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[12]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics , 1990, The Journal of comparative neurology.

[13]  A. Spurr A low-viscosity epoxy resin embedding medium for electron microscopy. , 1969, Journal of ultrastructure research.

[14]  The use of visual information by house flies, Musca domestica (Diptera: Muscidae), foraging in resource patches , 1991, Journal of Comparative Physiology A.

[15]  F. Wörgötter,et al.  Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli , 1987, Biological Cybernetics.

[16]  K Hausen,et al.  Decoding of retinal image flow in insects. , 1993, Reviews of oculomotor research.

[17]  N. Strausfeld,et al.  Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly , 1998, The Journal of comparative neurology.

[18]  M. Srinivasan,et al.  Global perception in small brains: Topological pattern recognition in honey bees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Hengstenberg,et al.  Binocular contributions to optic flow processing in the fly visual system. , 2001, Journal of neurophysiology.

[20]  G. D. Mccann,et al.  Fundamental Properties of Intensity, Form, and Motion Perception in the Visual Nervous Systems of Calliphora phaenicia and Musca domestica , 1969, The Journal of general physiology.

[21]  N. Strausfeld,et al.  The functional organization of male-specific visual neurons in flies , 1991, Journal of Comparative Physiology A.

[22]  Robert M. Olberg,et al.  Identified target-selective visual interneurons descending from the dragonfly brain , 1986, Journal of Comparative Physiology A.

[23]  William A. Fletcher,et al.  Motion Sensitive Descending Interneurons, Ocellar LD Neurons and Neck Motoneurons in the Bee: A Neural Substrate for Visual Course Control in Apis mellifera , 1987 .

[24]  K. Lunau,et al.  Signalling fitness: larger males sire more offspring. Studies of the stalk-eyed fly Cyrtodiopsis whitei (Diopsidae, Diptera) , 2004, Journal of Comparative Physiology A.

[25]  A. Horridge Pattern vision of the honeybee (Apis mellifera). What is an oriented edge? , 2000, Journal of Comparative Physiology A.

[26]  Robert M. Olberg,et al.  Object- and self-movement detectors in the ventral nerve cord of the dragonfly , 1981, Journal of comparative physiology.

[27]  N. Strausfeld,et al.  Cluster organization and response characteristics of the giant fiber pathway of the blowfly Calliphora erythrocephala , 1990, The Journal of comparative neurology.

[28]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[29]  Roger C. Hardie,et al.  Electrophysiological analysis of fly retina. I: Comparative properties of R1-6 and R 7 and 8 , 1979, Journal of comparative physiology.

[30]  Jun Zhang How to unconfound the directional and orientational information in visual neuron's response , 1990, Biological Cybernetics.

[31]  Cole Gilbert,et al.  Small‐field neurons associated with oculomotor and optomotor control in muscoid flies: Functional organization , 1992, The Journal of comparative neurology.

[32]  N. J. Strausfeld,et al.  Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala , 1985, Cell and Tissue Research.

[33]  Doekele G. Stavenga,et al.  Pseudopupils of Compound Eyes , 1979 .

[34]  T. Maddess,et al.  Orientation-sensitive Neurons in the Brain of the Honey Bee (Apis mellifera). , 1997, Journal of insect physiology.

[35]  N. Strausfeld,et al.  Columns and Layers in the Second Synaptic Region of the Fly’s Visual System: The Case for Two Superimposed Neuronal Architectures , 1972 .

[36]  N. J. Strausfeld,et al.  Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala , 1985, Cell and Tissue Research.

[37]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[38]  S. W. Zhang,et al.  Is pattern vision in insects mediated by 'cortical' processing? , 1993, Nature.

[39]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[40]  James Gordon,et al.  Entrainment to Video Displays in Primary Visual Cortex of Macaque and Humans , 2004, The Journal of Neuroscience.

[41]  N. Strausfeld,et al.  Visual system of calliphorid flies: Organization of optic glomeruli and their lobula complex efferents , 2007, The Journal of comparative neurology.

[42]  Paul D. Barnett,et al.  Insect Detection of Small Targets Moving in Visual Clutter , 2006, PLoS biology.

[43]  N. Strausfeld,et al.  Cobalt-coupled neurons of a giant fibre system in Diptera , 1983, Journal of neurocytology.

[44]  H. Campbell Orientation discrimination independent of retinal matching by blowflies. , 2001, The Journal of experimental biology.

[45]  M. O'Shea,et al.  Pentapeptide (proctolin) associated with an identified neuron. , 1981, Science.

[46]  Doekele G Stavenga,et al.  Visual acuity of fly photoreceptors in natural conditions - dependence on UV sensitizing pigment and light-controlling pupil , 2004, Journal of Experimental Biology.

[47]  David O'Carroll,et al.  Feature-detecting neurons in dragonflies , 1993, Nature.

[48]  Rüdiger Wehner,et al.  The generalization of directional visual stimuli in the honey bee, Apis mellifera , 1971 .

[49]  Charles M Higgins,et al.  The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. , 2004, Visual neuroscience.

[50]  Karin Nordström,et al.  Small object detection neurons in female hoverflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[51]  J. Hildebrand,et al.  Immunocytochemistry of GABA in the brain and suboesophageal ganglion ofManduca sexta , 1987, Cell and Tissue Research.

[52]  N. Strausfeld,et al.  Retinotopic pathways providing motion‐selective information to the lobula from peripheral elementary motion‐detecting circuits , 2003, The Journal of comparative neurology.

[53]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Organization and neuroanatomical relationships with visual pathways , 1990, The Journal of comparative neurology.

[54]  R. Wehner Pattern Recognition in Bees , 1967, Nature.

[55]  H. R. Campbell,et al.  Learned discrimination of pattern orientation in walking flies. , 2001, The Journal of experimental biology.

[56]  Martin Giurfa,et al.  Local-feature assembling in visual pattern recognition and generalization in honeybees , 2004, Nature.

[57]  N. Strausfeld,et al.  Small‐field neurons associated with oculomotor control in muscoid flies: Cellular organization in the lobula plate , 1992, The Journal of comparative neurology.

[58]  M. Heisenberg,et al.  Basic organization of operant behavior as revealed in Drosophila flight orientation , 1991, Journal of Comparative Physiology A.

[59]  Martin Egelhaaf,et al.  Neural Mechanisms of Visual Course Control in Insects , 1989 .

[60]  W. Gronenberg,et al.  Premotor descending neurons responding selectively to local visual stimuli in flies , 1992, The Journal of comparative neurology.

[61]  M. Srinivasan,et al.  Uniform discrimination of pattern orientation by honeybees , 1998, Animal Behaviour.