Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex

[1]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[2]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[3]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[4]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[5]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[7]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[9]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[10]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  C. Koch,et al.  Functional properties of models for direction selectivity in the retina , 1987, Synapse.

[12]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[13]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[16]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[17]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[18]  A. L. Humphrey,et al.  Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. , 1992, Journal of neurophysiology.

[19]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[20]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[21]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[22]  L. Palmer,et al.  Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat , 1994, Visual Neuroscience.

[23]  A. Saul Adaptation aftereffects in single neurons of cat visual cortex: Response timing is retarded by adapting , 1995, Visual Neuroscience.

[24]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[25]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[26]  R. C. Emerson,et al.  Quadrature subunits in directionally selective simple cells: Counterphase and drifting grating responses , 1997, Visual Neuroscience.

[27]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[28]  R. C. Emerson Quadrature subunits in directionally selective simple cells: Spatiotemporal interactions , 1997, Visual Neuroscience.

[29]  D. Ferster,et al.  Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. , 1997, Journal of neurophysiology.

[30]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[31]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[32]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[33]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[34]  J. C. Anderson,et al.  Dendritic asymmetry cannot account for directional responses of neurons in visual cortex , 1999, Nature Neuroscience.

[35]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[36]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[37]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[38]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[39]  C. Baker,et al.  Linear filtering and nonlinear interactions in direction-selective visual cortex neurons: A noise correlation analysis , 2001, Visual Neuroscience.

[40]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[41]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[42]  Bevil R. Conway,et al.  Space-time maps and two-bar interactions of different classes of direction-selective cells in macaque V-1. , 2003, Journal of neurophysiology.

[43]  Li I. Zhang,et al.  Topography and synaptic shaping of direction selectivity in primary auditory cortex , 2003, Nature.

[44]  L. Palmer,et al.  Response to Contrast of Electrophysiologically Defined Cell Classes in Primary Visual Cortex , 2003, The Journal of Neuroscience.

[45]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[46]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[47]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[48]  Li I. Zhang,et al.  Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. , 2004, Journal of neurophysiology.

[49]  Werner Reichardt,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 2004, Biological Cybernetics.

[50]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.