Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control

Although much less is known about human parietal cortex than that of homologous monkey cortex, recent studies, employing neuroimaging, and neuropsychological methods, have begun to elucidate increasingly fine-grained functional and structural distinctions. This review is focused on recent neuroimaging and neuropsychological studies elucidating the cognitive roles of dorsal and ventral regions of parietal cortex in top-down and bottom-up attentional orienting, and on the interaction between the two attentional allocation mechanisms. Evidence is reviewed arguing that regions along the dorsal areas of the parietal cortex, including the superior parietal lobule (SPL) are involved in top-down attentional orienting, while ventral regions including the temporo-parietal junction (TPJ) are involved in bottom-up attentional orienting.

[1]  Marlene Behrmann,et al.  Probability Cuing of Target Location Facilitates Visual Search Implicitly in Normal Participants and Patients with Hemispatial Neglect , 2002, Psychological science.

[2]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[3]  M. Critchleey [Parietal lobes]. , 1953, Giornale di psichiatria e di neuropatologia.

[4]  Daryl E. Wilson,et al.  Control of Spatial and Feature-Based Attention in Frontoparietal Cortex , 2010, The Journal of Neuroscience.

[5]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[6]  J. Gore,et al.  A Stimulus-Driven Approach to Object Identity and Location Processing in the Human Brain , 2000, Neuron.

[7]  F. J. Friedrich,et al.  Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. , 1998, Neuropsychology.

[8]  S. Yantis,et al.  Abrupt visual onsets and selective attention: voluntary versus automatic allocation. , 1990, Journal of experimental psychology. Human perception and performance.

[9]  M. Brass,et al.  The role of the inferior frontal junction area in cognitive control , 2005, Trends in Cognitive Sciences.

[10]  George R. Mangun,et al.  Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination , 2011, NeuroImage.

[11]  Benjamin J. Tamber-Rosenau,et al.  Cortical Mechanisms of Cognitive Control for Shifting Attention in Vision and Working Memory , 2011, Journal of Cognitive Neuroscience.

[12]  M. Corbetta,et al.  Neural basis and recovery of spatial attention deficits in spatial neglect , 2005, Nature Neuroscience.

[13]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[14]  C. Eriksen,et al.  Temporal and spatial characteristics of selective encoding from visual displays , 1972 .

[15]  J. Downar,et al.  The Effect of Task Relevance on the Cortical Response to Changes in Visual and Auditory Stimuli: An Event-Related fMRI Study , 2001, NeuroImage.

[16]  Jacqueline Gottlieb,et al.  Integration of Exogenous Input into a Dynamic Salience Map Revealed by Perturbing Attention , 2006, The Journal of Neuroscience.

[17]  S. Yantis,et al.  Abrupt visual onsets and selective attention: evidence from visual search. , 1984, Journal of experimental psychology. Human perception and performance.

[18]  S. Rose Selective attention , 1992, Nature.

[19]  H. Egeth,et al.  How does feature-based attention affect visual processing? , 1998, Journal of experimental psychology. Human perception and performance.

[20]  Sarah Shomstein,et al.  Object-based attention: Shifting or uncertainty? , 2010, Attention, perception & psychophysics.

[21]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[22]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[23]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[24]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  H. Egeth,et al.  Overriding stimulus-driven attentional capture , 1994, Perception & psychophysics.

[26]  B Giesbrecht,et al.  Neural mechanisms of top-down control during spatial and feature attention , 2003, NeuroImage.

[27]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[28]  M. Behrmann,et al.  Spatial probability as an attentional cue in visual search , 2005, Perception & psychophysics.

[29]  S. Yantis,et al.  Control of Attention Shifts between Vision and Audition in Human Cortex , 2004, The Journal of Neuroscience.

[30]  S. Yantis,et al.  Cortical mechanisms of feature-based attentional control. , 2003, Cerebral cortex.

[31]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[32]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[33]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[34]  S. Yantis,et al.  Configural and contextual prioritization in object-based attention , 2004, Psychonomic bulletin & review.

[35]  James F. Juola,et al.  Relative Effectiveness of Central, Peripheral, and Abrupt-onset Cues in Visual Attention , 1992, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[36]  Andrew B. Leber,et al.  Made you blink! Contingent attentional capture produces a spatial blink , 2002, Perception & psychophysics.

[37]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[38]  Marlene Behrmann,et al.  Cortical systems mediating visual attention to both objects and spatial locations. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Puiu F. Balan,et al.  Attention as a decision in information space , 2010, Trends in Cognitive Sciences.

[40]  M. Piercy The Effects of Cerebral Lesions on Intellectual Function: A Review of Current Research Trends , 1964, British Journal of Psychiatry.

[41]  J. Theeuwes Exogenous and endogenous control of attention: The effect of visual onsets and offsets , 1991, Perception & psychophysics.

[42]  Jacqueline Gottlieb,et al.  LIP responses to a popout stimulus are reduced if it is overtly ignored , 2006, Nature Neuroscience.

[43]  J. Juola,et al.  Tradeoffs between attentional effects of spatial cues and abrupt onsets , 1995, Perception & psychophysics.

[44]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[45]  S. Yantis,et al.  A Domain-Independent Source of Cognitive Control for Task Sets: Shifting Spatial Attention and Switching Categorization Rules , 2009, The Journal of Neuroscience.

[46]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[47]  A. Treisman,et al.  Voluntary Attention Modulates fMRI Activity in Human MT–MST , 1997, Neuron.

[48]  D. Perani,et al.  The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man , 1986, Neuropsychologia.

[49]  O. L. Zangwill,et al.  VISUAL-CONSTRUCTIVE DISABILITIES ASSOCIATED WITH LESIONS OF THE LEFT CEREBRAL HEMISPHERE , 1960 .

[50]  J. Downar,et al.  A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. , 2002, Journal of neurophysiology.

[51]  Andrew B. Leber,et al.  Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex , 2005, Psychological science.

[52]  M. Behrmann,et al.  Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices , 2010, Experimental Brain Research.

[53]  B. Gibson,et al.  Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. , 1998, Journal of experimental psychology. Human perception and performance.

[54]  S. Yantis,et al.  Cortical mechanisms of space-based and object-based attentional control , 2003, Current Opinion in Neurobiology.

[55]  Sarah Shomstein,et al.  Parietal Cortex Mediates Voluntary Control of Spatial and Nonspatial Auditory Attention , 2006, The Journal of Neuroscience.

[56]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[57]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[58]  Marilyn L. Shaw,et al.  A capacity allocation model for reaction time. , 1978 .

[59]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[60]  Christopher L. Asplund,et al.  A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention , 2010, Nature Neuroscience.

[61]  Joy J. Geng,et al.  Contextual Knowledge Configures Attentional Control Networks , 2011, The Journal of Neuroscience.

[62]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[63]  J. C. Johnston,et al.  Involuntary covert orienting is contingent on attentional control settings. , 1992, Journal of experimental psychology. Human perception and performance.

[64]  M. Behrmann,et al.  Parietal cortex and attention , 2004, Current Opinion in Neurobiology.

[65]  N. Kanwisher,et al.  The Generality of Parietal Involvement in Visual Attention , 1999, Neuron.

[66]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.